百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 资源推荐 > 正文

利用GPT4-V及Langchain实现多模态RAG

jasimen 2025-05-06 19:29 23 浏览

多模态RAG将是2024年AI应用架构发展的一个重要趋势,在前面的一篇文章里提到llama-index在这方面的尝试《利用GPT4-V及llama-index构建多模态RAG应用》,本文[1]中将以另一主流框架langchain为例介绍多模态RAG的实现。

大体流程:

1)使用多模态embedding(如 CLIP)处理图像和文本
2)对于图像和文本均使用向量检索
3)将原始图像和文本块传递给多模态 LLM(GPT4-V)进行答案合成

具体实现:

  1. 安装依赖。
! pip install pdf2image
! pip install pytesseract
! apt install poppler-utils
! apt install tesseract-ocr
#
! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)
#
# lock to 0.10.19 due to a persistent bug in more recent versions
! pip install "unstructured[all-docs]==0.10.19" pillow pydantic lxml pillow matplotlib tiktoken open_clip_torch torch

2.下载数据(测试文档点阅读原文查看)。

import os
import shutil
#os.mkdir("Data")
! wget "https://www.getty.edu/publications/resources/virtuallibrary/0892360224.pdf"

3.提取图像并保存在所需路径中

path = "/content/Data/"
#
file_name = os.listdir(path)

4.使用 Unstructured 中的 partition_pdf 方法提取文本和图像。

# Extract images, tables, and chunk text
from unstructured.partition.pdf import partition_pdf


raw_pdf_elements = partition_pdf(
    filename=path + file_name[0],
    extract_images_in_pdf=True,
    infer_table_structure=True,
    chunking_strategy="by_title",
    max_characters=4000,
    new_after_n_chars=3800,
    combine_text_under_n_chars=2000,
    image_output_dir_path=path,

5.按类型对文本元素进行分类

tables = []
texts = []
for element in raw_pdf_elements:
    if "unstructured.documents.elements.Table" in str(type(element)):
        tables.append(str(element))
    elif "unstructured.documents.elements.CompositeElement" in str(type(element)):
        texts.append(str(element))
#
print(len(tables)
print(len(texts))


#### Response
2
194

6.图像存储在文件路径

from PIL import Image
Image.open("/content/data/figure-26-1.jpg")

7.对文档进行多模态embedding入库(图片及文字)。

在这里,使用了 OpenClip 多模态embedding。为了获得更好的性能,使用了更大的模型(在
langchain_experimental.open_clip.py 中设置)。

model_name = "ViT-g-14" checkpoint = "laion2b_s34b_b88k"

import os
import uuid


import chromadb
import numpy as np
from langchain.vectorstores import Chroma
from langchain_experimental.open_clip import OpenCLIPEmbeddings
from PIL import Image as _PILImage


# Create chroma
vectorstore = Chroma(
    collection_name="mm_rag_clip_photos", embedding_function=OpenCLIPEmbeddings()
)


# Get image URIs with .jpg extension only
image_uris = sorted(
    [
        os.path.join(path, image_name)
        for image_name in os.listdir(path)
        if image_name.endswith(".jpg")
    ]
)


# Add images
vectorstore.add_images(uris=image_uris)


# Add documents
vectorstore.add_texts(texts=texts)


# Make retriever
retriever = vectorstore.as_retriever()

8.检索增强生成

上面的vectorstore.add_images 方法将以 base64 编码字符串的形式存储/检索图像,然后将这些信息传递给 GPT-4V。

import base64
import io
from io import BytesIO


import numpy as np
from PIL import Image




def resize_base64_image(base64_string, size=(128, 128)):
    """
    Resize an image encoded as a Base64 string.


    Args:
    base64_string (str): Base64 string of the original image.
    size (tuple): Desired size of the image as (width, height).


    Returns:
    str: Base64 string of the resized image.
    """
    # Decode the Base64 string
    img_data = base64.b64decode(base64_string)
    img = Image.open(io.BytesIO(img_data))


    # Resize the image
    resized_img = img.resize(size, Image.LANCZOS)


    # Save the resized image to a bytes buffer
    buffered = io.BytesIO()
    resized_img.save(buffered, format=img.format)


    # Encode the resized image to Base64
    return base64.b64encode(buffered.getvalue()).decode("utf-8")




def is_base64(s):
    """Check if a string is Base64 encoded"""
    try:
        return base64.b64encode(base64.b64decode(s)) == s.encode()
    except Exception:
        return False




def split_image_text_types(docs):
    """Split numpy array images and texts"""
    images = []
    text = []
    for doc in docs:
        doc = doc.page_content  # Extract Document contents
        if is_base64(doc):
            # Resize image to avoid OAI server error
            images.append(
                resize_base64_image(doc, size=(250, 250))
            )  # base64 encoded str
        else:
            text.append(doc)
    return {"images": images, "texts": text}

使用 RunnableParallel 对输入进行格式化,同时为 ChatPromptTemplates 添加图像支持。

from operator import itemgetter


from langchain.chat_models import ChatOpenAI
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda, RunnablePassthrough,RunnableParallel




def prompt_func(data_dict):
    # Joining the context texts into a single string
    formatted_texts = "\n".join(data_dict["context"]["texts"])
    messages = []


    # Adding image(s) to the messages if present
    if data_dict["context"]["images"]:
        image_message = {
            "type": "image_url",
            "image_url": {
                "url": f"data:image/jpeg;base64,{data_dict['context']['images'][0]}"
            },
        }
        messages.append(image_message)


    # Adding the text message for analysis
    text_message = {
        "type": "text",
        "text": (
            "As an expert art critic and historian, your task is to analyze and interpret images, "
            "considering their historical and cultural significance. Alongside the images, you will be "
            "provided with related text to offer context. Both will be retrieved from a vectorstore based "
            "on user-input keywords. Please use your extensive knowledge and analytical skills to provide a "
            "comprehensive summary that includes:\n"
            "- A detailed description of the visual elements in the image.\n"
            "- The historical and cultural context of the image.\n"
            "- An interpretation of the image's symbolism and meaning.\n"
            "- Connections between the image and the related text.\n\n"
            f"User-provided keywords: {data_dict['question']}\n\n"
            "Text and / or tables:\n"
            f"{formatted_texts}"
        ),
    }
    messages.append(text_message)


    return [HumanMessage(content=messages)]

利用LCEL 构造RAG chain

from google.colab import userdata




openai_api_key = userdata.get('OPENAI_API_KEY')


model = ChatOpenAI(temperature=0,
                   openai_api_key=openai_api_key,
                   model="gpt-4-vision-preview",
                   max_tokens=1024)


# RAG pipeline
chain = (
    {
        "context": retriever | RunnableLambda(split_image_text_types),
        "question": RunnablePassthrough(),
    }
    | RunnableParallel({"response":prompt_func| model| StrOutputParser(),
                      "context": itemgetter("context"),})
)

测试验证:

q1:

response = chain.invoke("hunting on the lagoon")
#
print(response['response'])
print(response['context'])


############# RESPONSE ###############
The image depicts a serene scene of a lagoon with several groups of people engaged in bird hunting. The visual elements include calm waters, boats with hunters wearing red and white clothing, and birds both in flight and used as decoys. The hunters appear to be using long poles, possibly to navigate through the shallow waters or to assist in the hunting process. In the background, there are simple straw huts, suggesting temporary shelters for the hunters. The sky is painted with soft clouds, and the overall color palette is muted, with the reds of the hunters' clothing standing out against the blues and greens of the landscape.


The historical and cultural context of this image is rooted in the Italian Renaissance, specifically in Venice during the late 15th to early 16th century. Vittore Carpaccio, the artist, was known for his genre paintings, which depicted scenes from everyday life with great detail and realism. This painting, "Hunting on the Lagoon," is a testament to Carpaccio'
s keen observation of his environment and the activities of his contemporaries. The inclusion of diverse figures, such as some black individuals, reflects the cosmopolitan nature of Venetian society at the time.


Interpreting the symbolism and meaning of the image, one might consider the lagoon as a symbol of Venice itself—a city intertwined with water, where the boundary between land and sea is often blurred. The act of hunting could represent the human endeavor to harness and interact with nature, a common theme during the Renaissance as people sought to understand and depict the natural world with increasing accuracy. The presence of decoys suggests themes of illusion and reality, which were also explored in Renaissance art.


The connection between the image and the related text is clear. The text provides valuable insights into the painting's background, such as its use as a window cover, which adds a layer of functionality and interactivity to the artwork. The trompe l'oeil on the back with the illusionistic cornice and the real hinge further emphasizes the artist's interest in creating a sense of depth and reality. The mention of the lily blossom at the bottom indicates that the painting may have been altered from its original form, which could have included more symbolic elements or been part of a larger composition.


The text also notes that Carpaccio was famous as a landscape painter, which aligns with the detailed and atmospheric depiction of the lagoon setting. The discovery of the painting only a few years ago suggests that there is still much to learn about Carpaccio'
s work and the nuances of this particular piece. The lack of complete understanding of the subject matter invites further research and interpretation, allowing viewers to ponder the daily life and environment of Renaissance Venice.




{'images': ['/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD6APoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1eOe6JwZpD6HcaJLuZDtM8h+jVKOQBg5qncIFlZgwyeormTaESfa52GFlk/76NRvdTIrP58hA/wBs01G+YECke38xWw2M9jRJXBOxVOp3D7h5rjPH3jxVaWe8ONk8+P8AfJqUWMwbAQ1ftLMqpLAc/pQr9BPzM2KW/Y/enP8AwI1JJdXS4VnlHHcmtcoyDAIP1pY4yW5OfqKbTYJ2MmCS9kcANMR67jirgW6/56MR/vmtMR/Llv0qMxqFJ7VPKVdlRbe4YgtOV9txNPEL5wJ3P40r4J4YkCpY1WOESMevGMUWSFdsjC/NgSEnvzSFyWKpJnHvTCFjkdySqkcbjVLzBlijflU81irFws+eS2PbNILmEHa0vOemarQXTBGcsxUdRisndukYhSFyetV7RdCXE6TK8HccH3p4AYZB/WucBIAAc+3PStK0uBFGqOxyefpVe0RPKzSXKtk5x2qTIPBH51TW7TOOvuDVuM5UMDkdqaaYNNClD2zj2pQT3HHvUiuvfrRIRj5QKNw2IzIApbPAqvJcblAUmpCd4ZcjJHUGqE2y3xvkAB6Y60mmFx88jC2ySQd1NjlwoNPQxXMZTd17kVE1pIn3WVl+uKlpphdNBJMSeTUcLhZc80iozNtGKtLZADPJbFRa49iRXB6U5cEdajjgcDlD+NSrEc8gj6iqQhwweBW9Gf3Sf7orEiQLkd6248eWv0FawHAwFbOTz71DJbbiz7iB3q8wQLgHiq5kBbG7ArNO5UtCvFGcZAOPXFWNgUDkk+lO3Z4z+dB6jJ59qNUGjK1xKFXarAHvzVUXEoOA2asS2OXJD4zyRUK2mQfm9qave4n2Jop2Y9s1ejDEZ6D1qpFbIg4GWPfHSrynCbQOlVcLEy/d4HSo7gZxtqZJVbEfAwtRuN4Y5AFQ31KtpYrQwrISZBgL0FLJdRKPKXkg1CJlWT5+VXpz1qo/7yUsowD0FZykylHQk1FkmZXB+YjGKzmZoJCxUZx0NMvrgxSCIKdy9SaiVml5Zhk1LV9QvbQZ50iufLkZQeuKsBo0QZZd2OahWHc3FSNEqJuccelTGNhtjkCOwP8AB6jmp/MRmwF244BNZ4uZAcIqge9XYW85c/LnoRVezaQudNlpLaUOuBuU8lh0rRTcq8j5cVnW8s0cgLtlemKtRH96SzMwbkc9K0jIiSZYXcx+UD8TU+0lMcU4BCOAfwp+BnlsZ7GrbJUSlIvkgY5PtVO4sZbh1dPn4x05Fa7xq5we1CRhThTQHKZcFqYATJwewq4lukqclsH3q00KPyy596eiKgAUYFDbDlRQTSo1bId6lFkoP35PpmrpVj06Uu0496S0G4lQW4A+8+PrThGB0qyQepph4HFNisQbK1EACKOOlUMDNX1xsXjtVU9ykYR5BGDUQUZJPGan2kdz0pmxhznr2qEwkriKORjJHuakZlXk4x6UgRgMflxSmIE8jn1xRe4tUKQjn0NQkqCQi59zUpjBHqB61L9m+VSMcjsKadh2bG2ykoXYdOBxTjywZuBSeTKBtWTaMZPFRNG/QTvx14FDeo0mVbpnM2EPFLb3EgGxhuHck0XFsx3KZZGBxzmqsNjEZgC0vr941LSHqJc3USSlQB9etNhv40cYBOevSq13BGk7AblXsCeaghto3k46jnk1KimJyaHTwlpWdjuLc8mpIoljh34G4noTT1MattOG/GpriFDGsgZVUDOM0prTQI76lRY8EneFB70ySTMBjDc564qJwSSVyfqahcukm18H8KUQkxpU9c1YtODkkhqdGEcDIwan8gIOuD6+la82hmoO5Yjnxw2fbFT/ANoSqwCBAB2xWUxZWOT361uW7BIU4XJGfugVndGvKy5HdkRqWXBIzVRt7zl8nBPHNTyuHj3sPm7AU2LJX5gKXNcfKTRmVyuHzg/nTrm7FuwDIct0xSxc8imX1vLKiGPB9apyuLlHm+Vog0eD6jPSpbS488NvXke9ZEUbWz5dQQfpWpazB2CeWFHbFMSLwJJFBwOtHlj1prvGjKrOAzdATyaOZpDsKTxULsI8BpAMngE9aY88vnNEkIPy5DFup9MdRSi381UedF3jnHXb+NTzNvQfKh4+YjFX1HyjntVIIFq4p+UfSt6W5NjIVc9acFXOMc0pyqggUihj781gpGjiOwOhPNKq7jyKXHHpSqpGO5p3Cw7YAenFDtgZ7CgZ702QFxjODRcdip9pdpSQAUz+dKrF2IAxmpfIXdgDmlEe0+4qbhYY8XyFd5B+lVfs7GTJlcAenU1pEowx3phVRzkU73FymJPYq0jBVdvcmqi26q4zGcfjXTqFAFVblHXmJQQeuBzSuHKYccOX+WMk9qml3mIxtCOR2PNX0hcnkYH0qKW2cMeOB3qG2NRRlJEVOCpJoktfOOdoBAxVpoSGznGKcIHwShJY+gqlLSxLiZgVo/oKftnlUbMn2q4bG5YjKN9RVyDT9o3FWBHPWndIlRZlR6ddMwMq+UmfvN/hVyeSVJwC+6MDAK1oTEyKo2EYqSK03wAMmRnNZylroaKJXR1aPc7AD3NPj+zOvEp5pbsLMnkrGUKnqO9LaWRh+aQ5HYUcyHysdFHIchXIX1p6T+WpQndn3qSR3jUsF+UdgM1VSVrqDdHGYs5wWXBB+lL2gOAsgtwSzuB9W4pyTpCytErSknGF4xT1g/cqkxWU9ye5qYMiD7qgD2rTmuRyk5cOVPmkY6gd6bLOFZQiCRicE5+6KhVo7yBlTOw8Ejj/AOvViCIQxrGo4UYyTk0OSGkxYoYo5XlVR5kn3m7mpDnNHOeDilwe2KE0OwbTnnmrK/dHHaq3Pc1YUnaPpXRSe5D0M0hhk54pqqcnBwc+lObBOAeaauATknrXEpWNrAZUTPmsqN7nr9KlVgQCOlUbu0W5JfzGVwQyHP3cVcEi4AG3PfHalGbu7jcVYmwCKjMefakVx0JAx3pHnQYO5frnFVzoVh4Tk+lLsBOSKo3upw2EO+Vx04VeSa5/T/FtxNdSPcQYtCSF2D5l+vrSdRFKDep1xiGc4zSqoK9KrRalayoHSdCp6HNVrzV4oUZY5FMuMgE8fjU+1itQUJM0VYbypXkc4p4bjAUV5n/bM8esPexTt5mSvJyrDvkehrrLfxTZy2TzH5ZkXLQk859vUU1U0G6bRu4GelNdN3AUYriT4q1ZLhWxEYwclNo+Yeme1dZZataX1sJ45AOzITyp9DRzp6g4NFW4tSkowCQav28QVBkY/CpDJG2OVOPfpS+bGR8rj86nmXcmxIMD0NL61Xa6iRdzyIq56k4pj6jZoQGuoAfeQVSncLFnYCOgwaUIACMcVnf27pu7H2qM844zimzeItPhXPnBvQLQncT0LUdkTK7TSFwTlR0x7VZkCKm5yAo7ntXNXPiyIqRblU7bmIJ/KseXV1nLeZcmTnkFs4p8tkQ6h1s2s6fbgBpd577BuxSprGmydJ1H+8CK4l5EP/LVV/GkWaJsgygn0zVWRn7SXY9Bjkt5k3xujr6g8UxihkH7yMR4wV7k/WuHSVFHyyAfjSGaMZYz8jqQelJxv1H7V9j0NERBhVA+lLxXBjXZoU2m9OAM8kdPrVmPxVLGqs00brjvjJpWKU/I7PgUuRjriuUfxpaoo3IN55xvGKoT+MYpvlS4WHuQvWhNlNo7rg96nGMCvOv+EpAXJ1Aqo/MfpXfWcnm2UEg+YPGrbvXI611UL3ZnJ36HhknjbVobh2S446YIyMCkfx5rDgDzo1A9E61zcxzIw689agwp6HgUvYU+xtzyOjHjDVsuVvWG7qMDFRf8JTqxzi/lGVweawQqBsnJz2zVlJbZEO6Ek467qr2NP+UpTl3NKXxNqrlC+oXB2nI+foa0dMuDc7HvdUlZZD8lurtlj7kD+VXdP8OwXSgpYxSqUDH5z/jVPUdLktNesxBavHCjIQApwvzc1zudKXuxVvuNLSjq2W7jVvOkCxGUwp8oTacZHrnrQL+F0Xa00QU/wRnmi30+7kaXy4chpGYc9iTirMOgXxiYeWvVm5b1rB+zWlzZXsW9Jv7W4XzYftMw5G5YjtyPXP8AOpNQnm8mQuwjLKVizgbmx0rnTbapounR28byJK0xLmE5BU9jVy5lZ7yO0eRmSaDCFjna+ciodGPPzReglN8tnuZp1KKGKCTD4ddrjHIYGpF1e3klUKkwBIxkAY/HNVUije7UTDgkvt9G71fFpHIcJbMeP4UJrqaguhCcmCatNeBkjt4/k+87cH26UyWW9jtpmUpnbnam7d+GKdb6bfwO5gspC0jtkSKQNoxt/matppmqy/LMkcaMeduQ2PY54rOXJF9LFRbasYEd94g2EK9/jt8rUK/iJiGKal6Z2P0rcvrA2pVYDLIpX5mecjac/Wq8V3cwg4vVj/2UkZjWqnFq8Yojlltcr3MbpbSAy3VzMBxvYgA+y9fzrBku7lcB2kB9CSMV3WhRzXniK2eSKXaZgTMy4B45/GugTT5L7U7m2ubRPKTOPMjyAP4Tnvmh1eTeNyWr7Ox5It5OQ2J5B/wI0z7ZM3CyOSB3Y16Lrnh7SbRW82zhQ43boyRXGSyaYHIgtJMDg5Y1rTrRntFkOEluzOW6lxnec/Wj7RJjbvb86kdDM/7q2YDPAUE1Kmm3zqStlPtHUmMgVt7vUz17lYT3GMCQgH3o8+UH/WsPoam/s6/JwbWQD3XHWpxoOqkFjYyhfVlxReC3aJfMVo7m4H/LZ8H/AGqVriY5zI+D6tWxb+EdSlVXZoYlIyMtuz+VXf8AhCbgpj7Wmf8AcrF4iinZsrkm1ocxvc/xE/jSeY/I3H8635PB2pRn91LDIPqRTB4Q1c9fJGevz1Sr0X9pEuE+xjBmAByc0jSn1Oa6W28FXJwJ51Hsoya0m8FqsWYonlcDjeetZvFUU9Hcfspvc4lZXycE19F6K2dC085/5do//QRXhN3ompxyvH9iYAcfIBivddG3Joeno6kMttGCD2O0VvGUZaoyaaep4mPD2l2/mSXmpiTyvmaKHAY84wM0DT9Km3sILku2Qu2M4Poa1ZNJ1CxuWghXTRkZXdgPx3+8avW8OuRQLGt5pCKgxghmP864JVGt5fidqiuiMBbPTrRQZLBnbP8Ay0jzn2rWsGsUQF9FEbYJeQxgKgHU9+lTzaXqF5NBLc6rp26I5ASE46g+tTXWjXl2qLPr0DIucqlsADn6Dms3KEvil+LLs1tElsvENwZpIo9OfZIwWHCqgUdMt6+tY0Oo3txeI13E8zL/ABZAyM+9a39gF02TeIbkrt2kKgUEVB/wi2nl0Vr24mQYzvc8gHP880lKiuoWnfYijll+0/urElyMFRNuLDJ61pR3upxkBdOHpzITWhp6WmnxGOKRUQHhViA/UCrRv7fYy+a2TkDrWcnBle+uhhyx39w+/wDs2FXPVi5H9aFstTB4jgTIPHWrRuHWCE5+ZXwc/wB3NXJ7mLckinG1CDx0pNpBefYyxpuokBvMgQnqUjBqT+zb8gBr91HQ7QBVHVvEDWd9Akc8SxBh5wI3EL6e3rWrHeNNEHhbcp5BxwactEpOw+WpbYpjw6biVVe8uXfv+9xVtPBkHJkDkHnmY/0qe1uUimW4JLE9Rj1FX/7bhLkNG3FONVdyHCp2M3/hF7GHbttFck/3S38zV+HRIowAlvHH+Q/lTj4itVkVfJfHOelSP4hgCkpDJkeuBVe0h1ZPs6nYjW0FvdgkDKsCDWttAmkOeoGOPrWJcatBJJuEMobjPIrQsNQS+up49hTy40PPuT/hRGUW7JilTmldokntoZeZEQk8cjNZJ8OIXJUIM+xqxq14qyvb7nR4wkqOmDg5PUHrSnWoQhzau3HIBrOUoJ+8y4wqWvFDE0Bk6SgDrwDUFx4QiupPMa7uI2P/ADxcqD+HercniGNfvQSZPbcKUa8Gj3C2b8//AK1L2lKOqYezrPdGZL4LYRoF1e8wo24YI3HTHTpQPDN7GiqmuPhRgZt0NXD4jyBm0+Y/7VOGtMzH/R8cZzniqliIf0gVCp2DS9BNkuLm6+1Lj5QUC4/AVrLa24yBEuAPSsk63KIywSPgfxNXI6p4j1rULi4tYGaGCM4aSFTyMd2/wp03Gq9BSpzitTqtT1zQbBD9oAeXnEKD5vx9PxrnIPFJuNVjEOlolsw2Z+ZyvuccVQ8PeD7rUmS5vt0cLfNt/ib/AAr0Sy0e0sYkWGIKF7Dj/wDWa0nGCTildkp21ZkLf3GCRDDj/dIP86sf2pcxInyI/TqDmtc20ZbkHP1qhrkc8Oi3LWJ23IUbGPbJH61ywpyv8RpKcX9k57U9YtbaRvNjG8gfIrc5J9K9AsmWSxt3RvkaJSueuMV5XaaCnzzalKXnfkdSAfUnua9UslVbC3XapxEoyPpXoYRQTai7nPXvpdWPJLPw4Fuorj7VK7sQ2VXjBO3qevWuih0dZVkXdJ8jlCTjk/5NaxtkhnsbaNVYKrFi3UKCCP8Ax7FWndLQKShIlmC8di3f6cVzyjzv3jb2jj8JkJoaDjL59cirKaOgGMv/AN9VqMwCFmwoAycelRWDPJZRSSPudxv+gJyB+WKPYxJ9tLuZtzYW1lbS3FxJ5UKDLMzcCsDRb5Nf1KcWVtcCzi4aWT5cH0x3Pf2FdpdRLcQNG2OejYB2n1Ge/vWPoMEdrqGrWcYCwRSxmNOygrz+eKapwSatqNVJPW5KNKjIGN3HqaT+x1ZuY2yOhzW0EyOAKcwxyCKI0I7sl15dDFGioR8ynntuqC4sreM+SFeSdlysatyff6e9a080n+rjXaT1dhwPp6n9K57xVfTaLpkUlrDveSTD3LnPlHsWPvyPSqVGLdkHtZ9zkvEOkxWz3RZIvPkVZFk2sCxBAI5+o459vSu7ttEQQIrLtO0ZAY4HHavN9Z8VDV2iLyQb4lZV255JwPu9e3H1ru9AudZXS4ri8jUFh/qgCcD1K9QT7dPSta1O8VzF88krI1BoMG0LtGB2yaVfD9oDzGp+pNXLS6+1RllQgjvnIP0P+TVoDA5HNYqmkQ6su5kf2Bbbvlgj+uKeNCt9/McefpWuh5IwfagsN3I6Vfs0R7WXcoDR4QOET8qkh063ikZvJj3EAZ2irZcZxmjI3dc8d6XKlsPnb3Mu506Ka4dlijDeWAMrxnJ5rG0ZJTKtpqRt5JZlaS3lT5fMUHBBXHBH6iugvllO14ZSgHEm1ctt9vesTWrCFLcazCXa5tnUxsCSX5Bx+XGB60kk20yk9DYGlQY+4n4inDToFXAjT8qtI+9Q2CAwBweopScj1qHEFM5zWr3TdFEZuYxvkztUKTk9vzOBVTwrLdanBc3F39kMO/aiImDGw6qfXqOe9ReMZri40+/WC3E0SxKhk8zAjO4MSMcnoKzvhneXDx6jZTxqyI6zCdW6lh0x7ba09mvZOS3Dm1Ok126g0a1jmMKHcwG7YCOOSMfTNaVpa2t1befEyvDMu5CB8pBHFcr44he/tylu5Y2yGVwGG1R33d+nQVJ8PdWeaxl0qbcXtcOj9QUY9PwNCpp0+YctFdHXsJLWBBbwiTGAy7sHHqPU1xWoa1PpGuf2lFPNLZu4SS3nyNoOCcDPGO1d3nB61laxplhqarDcgCZzmNguWJHb3H1pLR6ipzSvfqa8ckcyB0dXU9CpyKbcwrPbSRMuVYYxXCeGdZmsdXuLe53LYTudrk/LHJ/QHp6ZFd2JA2CCDn3ocUFSEqcuVnP3GlQsNu1xyDwxrr7aMJawqDkKijJ+lZzMDwQOfUVqR4ESY6bRWuDjaTM6srpHLXbPFPd3Qz8lrtTHUHJP+FGoF/s1l1Z1uIt2Pryand15z/EMH3pBISv4+lRYLj77cbG4CAljGwGPUinxgxQqgHCqAPwFNdsoR6ikMnyD5abTFclLFgfpVCzt5Itbv5gAqSxxYORyQCKsCXAHBqHzgt2MfdKYP17f1pJaj5tDQDHnJFJwcZJquZPb9aasvUGtLGbkWGww+Y57YJqG5toruAwvnB/GgPk9h+NOyMfwj8aVmHNY5608I6fbak8yW0MbDkMicn6eldKkSRKFVRgVXk/1off/AA4p3mY68/ShtX1G22WN23oBzTg5xVcyc5JIpFmGCc0ubURY3jPXrRIiyqyNkqwwcH/Cq3mdqcJiO+Kb1EpWOe1TRPEltmXQNbmI/wCfa8w4+gYjP5/nXNSeKPHumORd6THMBxkQ8fmprvLiIXAKyXExX+6rbR+lUm0WyJJMch+rU1NdYplrTdnDXHxI8RMpUaOIX9VjY/oaytR8c3t5qEd0dLEbxBMYZsBlcNux0ycY+hr046JZ9cOAf9o0r6FZEHaGI6/eNXGUV9j8Rymn1/A4mL4s3JH7zRh+Ep/wqVfisxbadGchuAPN6/pXX/2HZNjKZB9Wph0OwjBb7MH+vb3obpr7P4kXv1OEj+IMNjBe2A0+SSORnAZZANuRjjjmq2l+O7fSpraSLT5FxAsFyisAsm37rD0P8676PRtOXaiWvAGB0qYaTZn/AJd0GT6D/Cjnp2ty/iNyfc4mXx7ZJetqI0ybyruNo5YNyneRj5icfpUOiePLPSLorDZTC3dAHAAyzDo45446j8q72XQdNnfMtqC23Gc0yPQdN+6sAGCfT/Cjmp2+H8RczfU5/wD4Wvb540q4P/bUf4VkyfEFbjxFFqU2m3Lx26FbeBZcBWPVjxyev6V3ieH9PT/lmeP9qlk0axjwVgBHfnmlzQS+H8ReVzg38bodT+2xaI+xgQ8LvkHIwe30PTrUlt4+1C1lUWOjskBJ/wBHZ2df+A8ZX6dK7b+x7TdxEB64Y1INJtA2RGSvf5jS54fyfiW5t6ORh2OveLNYIxa2GnQt0kmyzH6AnJ/KvS7VZBaQh5N7hF3NjG4461ya6bZAZESZPc111uAttEBnAQAflWmHleT0SIlsczJneev4URo/ZifrQ2NwOeacrZwCwA9TXMkkW2PwO+eKYWXYWPSsjxB4hh0CEGaJpJX5RFOMj1zUOm+JLfVLYTJFKMMFaIgBvXHpRJ8q5nsXCnKWiRyWv+PdRtdUmt7OKOOJDtVnXcT71v8AhrXpdb0ZruVVWeF9rbeAcc/yqzf3fhjXFe3mtcOG2qwhG4NjpkdOfwrGs9O1nStPnMJtkjcHMWegPp2zzWrcXCyVmXKFjusj1/Km+bhwMCqF5q0Gl2cUl23zsoGyPkk45qDRNcttdaZLWKZWhxuEgHeoTdiHRlyqbWjNKS8hgXdPMka+5qYSRva/aVdWhxkMrAgivMviVdX9veRRhXW1VBtcf3u9Y/h3xCloogmuJwryKXZZCuR3GOn49a1VKThzjVOL0PYmCOUdTnPQinhwu0HG5jgCqkDxeRH5bDZj5cHII+tMa42X6ID0iZuvuBWG5k2aDZCg4pm844A/KoPtAI5c4pwmBPXj0qiLoZBfrPdSwCKRJIwCQ67cg9CPyqwHYthlxx65qEFfPaTYoYgLkDkgZ/xp5mUdh0poTt0HBmY8EcU7IHXH4VXE0eSdvWgyIeStVYSZMHK5xk59akEjLHuxyeCOtUZL2BJoopMgyZ2HHBI7Z9amMqgjnI9KLA2iYSHP3M/jS72PBX8M1ALhc+gpPtALbdwANJuw1qK2Q2PunqMVmzPK1/sV2wGGDnitJCpJOc/WoDa/vvMLZy3pgAVEldaFwlZu5Y8xQdwBLY5oiJ3EkUjIuQBt9zS79mBxxV+pn6FjdkcHp2prucdKjSXkjHNLl+xHvntQxEUmXOFbGeGUHkCrAkUcAcYqMYUkDGKOwyQTUWG5dCUSL3H510cBP2eP/dH8q5gvgcjNdNb820R/2B/KtsP8TK6HFTEq5IfIp8TvIFQcknFV52y7c96r6jP5Gi3UoO1gmxT0wW4H9a5E9Tppw9pNQW70OA1S01jW/Er6dFcI8DXBMbmQBSpPJBJz07D0rp1n0LRNEaFnmnv/ADG5RdrAnj5SeMYrlJnM0ThQVmjOQQfToRRaX9wb3T31K0+0QNOruyHLFSemM4/rXUl7SNmtuh6WLouhJNSbT/Q1luJLb7BBb2nl5fcZc5aTJ4znj24rr1USLDABxI4G3PXByf6Vg+NptviKJYxgxphQPUNkcfhXSaPGJ9R3hQ5QeYULYwvbP41lPWzPOqO7KGu+HdRy07rbnnAcuSOfbFZmnXml6FpjeXd3bak0hBCKqrk8dSCCB/kVveLdZknEGmxRtHcTzIqK3fJIzkds4rmfFFrZ6HFHZKommK7jPuIJ+q5x9KuEUtEaupKUUn0MjxhNdT3stteXC3EUfTywAob3x1o8NeHLPU9BM93GTLK52uDgqBwMe1cvqtw8kW52Ykt611/h7VTB4atIkZnlVG/cwxGSQgE846D8a3qKUaa5e5jU0djU0+2n8NwgC8E1mSA4kG1kOOo6jHatTTrk3dxLe8hGHlRKf7oJy34n9AKjt7WOZIZ590shAIEvIXI9Ogq2oCEkDArilO7u9wm+Zbalvf3zmpFcdRVRXHBzkU4SAA4PWmpHO0WvPbGAtMeToMc1XMuB1pplzyGp3EWAzdqdlic4FVlkI60vm5OARSbBIZesWNuhAy0wI9sAn+lSCRuPTNVZmJv7RTnkSH8cD/69WSMMQehH60N6DtYSV5liLxKJHUghGOAwzyM9qxfFniaUxxxx2E1r3DAjAI9CK1Zpkt43d3AVea57Tp/7e8S20EztHaksFQHkjGcj0J9acHd3toddCHNF36GroHiSLV4SrgR3CD5o89R6it1JVzk9DVR9A0yC/R7TT4o0jyWmIIx+J71Qk1mC0bbOHU5wAOeOx/KplJX90lYedR2grmxJLgjGfwqvNfwQECWVEz0DHrUFrfQX0XmwOHUHB4wQfQ1zXiSVYdQQNIoMqb1B744q4Xk7GMKSc+WWh18d3G43I4Ydypp/20j7u7FeZaXfT2mrRlCSJHCMueDk16EC3496uacHYyqU+V6FoXG45yc0faCc8moVf5DgfjQJew7e1Z85nYsC4ZhyT7V2toxNnAcnmNf5VwnmEjFd1Z5+w2//AFzXv7V0Yd6stHCSuBM31Nc94l1NXtE06N2Af55cev8AD+QGfxqfUtTFqZzs3OnJUjO36jufQVzOqzQ3mlT6vbyyKVzGA2CWYbQSfz/CueEG2ehg506NTnqq5h/2nLDfxB4lk2/K3OA+fXHSmy3M9mcpKkihxJiP+E9cex9qXSorWeC5+27o5lljAGDwuCWJHfoB+NXLV7CXU7e3PCMCdkeD1U5Bru0i7WNZTlWTlKXoRaPfTLqb3E9zJkw5Uu2ep4HJ4r0jw1qFtpulXt3cNbxXdzIIx+8BDY9DnB5JrzmGzXat5fKsMBTdDbbsNIg5yx7L79T2qtqN4upGC2s4mkYHBUKB34CgfdXB6e3NTKHPLQ53NKPKkdrr3ie207xks1yrOluWjBUZIITGQPXJrA8ReI4JtfhvFXzbdmDFOM7NuACOx9qyb2yMM1rbajuSeSQO+35ikeOnuetTTGxjVY5UWK2TMio4w0nYZx35JpqnBWa1JV5aXsYWqXJv7p5IohBB8oEaNkDt+ddjY6jCGWGCC2lckJKrq4ZIwByWUgEfmc1ykiC8lYWcDRQ8csc9OmK3LLTjFGpyyg43c8sfU1dSyiugXSut/P8AyO6GpRwny9jBR8u7OSPTP+NINR3njIGKwISxG987SAFB9u/51YUkliD7V5/syW4mt9u4wOlOF8MDnj61jFmB4PPfFRNMYzxnPqBVchm7PY32vUPenC+TgZAP1rj9Q1K8EarZx/OTy0mMAfSn2BmQie4LTTnuzDav0FN0tLgk+p2C3IZRSicHpWB9plwAI+M9dwpVuZwc4Az71HIxOKua99NIXtZ4wzeRMCyqM5Ujaf55/CrUl4Gt5jE4LqdowM4bsMViLeSE8YyDxVa0upFup0umzMx3LIR95fT6ilytmkORay1LWr2mr3dvFDJLaKWUGVI24Q+hPc+1RWmhRWyiYXMhvEIMcmcBWHcCg3hkYhQeDVeDWPN1q4sEjZ5EUspGMZxnknoPc1oue1loV7Vt2WhU8TavrLWzxy3zuwYfIpGP0684rZTSru/t4DqFvNbX5RUwuG8w4zjH97qcdqwdXsf9MMX2pZCEDkxj7rnqPfBBrVPiS+g0mzv7q5PnWpcwkn5mBwCTnr6euM1U4Xirbno87pzdSi7K339yNNN1nQ7pntrK7kVm5URkmQ/lW4PD1z4pgUapps2nGLlJHkXIJ64A5/Oubk+JurXtk0rwoDDINroSMgjkMPp6U/TvG+p6lfJENgLuNm1s984q3TqL3rarqeZOUakrlm88LyeHNS8y1uxOuMoZVzj/AOvWtpOpvewSCUBZom2sF6HPQ1s61ZSXemW03IcQhj/n8q5GG8NjI0iQGRZ9oKqQCG7Hn61m37Ra7kzjpodMJD2NHm/L2B7VlfaSC3NNF05BHTB9ayszPlNgTe9egWX/AB4W/wD1yX+Qry5Z8Ic88V6fpxzplocdYU/9BFb4f4mK1kfNN9NcXd3JhnJ3ud7NtHHWrb3ttb+EktFKzGW5yw6HAwW56gHgfhVDVZrq+vHMzllRiqIowqjPQAcCnyWsa6dBtZC6mRnXzFBAJGM5Oc8V1OKdrmtyLUrh7u6EkaNDHJFHlAc5KjH9DVrwyiDXoAWweQeM5z8uPxzUNtf6bLbxw3QuIGRSvmw4fPOeVP17GpdMubK21+0WB2nBnjAkWMxfxjqCTTfwuNhrdFJ7y8ubxnUvLcSZThd2eMd++PyrS0fUrDRrFjNva5mHMkD4kQeg6gfoaq38l7LcNAvl20UTOi+WNpbnBJPUk4plppG/GFLnrk9KJWcfe2Grp3RVe4lub1prYSKufleUglR/jVq201pJBJKzSuerv0rctdOhQ/OOQOhGP0qdo1Kuq5JA4/Cs3W6RFoVo7eOJcY59elaCBXhXdxnqKgnb930HI9KLVx5Cg9c1k9VcTbaLyFf4hyPenM2ASABn2qLeCTgjNPwWXAIOKkzsxr7sgBuCe1KYw3U80zcFIOeB7U8yKRuoBkJRQQdoJ78UvpgYHpTWcLnABHqaXcM+maY2yUONuM0bwehNRb+TwKQnJz6UWJLCcnqQT0Oajnt1kXDFsqcgjqp9RQjqcMRjHFOeQgFRx3OKWqGnchUSySJHnMjEANjAz71IunxFbwJbNKm4LeyqxIZ+yZHYd/U/SrMKCyhWQkm6m/1XP+rXu317D8TWHd6ZeSatJaafevbwuvmPtkZUj4+bd7Y5/SiPvaJ2Oik4wknJX8jSs9Ps9MuvtEwit7IbTI7tlUJ+7x1Prj6019F0/X9btbO31iO4IlKTxqp2IueGB/iyOw9aztWjg1GFLW3u0S2i+4CCzMe7Njuf0HFVYdKWCWWQXEqGQAKViYEEeh4q4xt7zevodVROb5Uko+qNfxf4YXQtTEFmqi3uIgcM3Vhxx7+1cfPbPp7Q3VvIylSGDjqp7GvYNejt/EugaYd7i+ZTJaBl5kZRhkJ7Nxx68V5fBC91ePZSq0aoWLbxyVznH55rSlU93XpucvsnUkoJavY9I0vxhqWv+G4l0zTPPvlKwXJf5YkJ7gn1/SuS17Rb/Tb63i1GYNKHBCQ52L8pPB7n3rqvDGtaL4f0dYJ5xDL9sEkiKjMdmODwOegrP8a63pmpzWt/ZXPnrGNsgVSCpPAyDWcLqXurQVSm6cnCb1RUsrkzwbXOZI+Cf7w7GriH1rkbHULiS+2R7U+U7Vb+L2Jrai1NeUuFaJ8456H8aJ02mc++xsbwa9Y0xs6TZnn/AFCf+givHYZVki3A8etewaWR/ZFl/wBcE/8AQRRR0bBo8Dkt0E8ionVmHr3qncWUajD4YdwecVaupiLiQIwxvPTjvVdhv6njv701e9zoZmmwgkf93GwH161esbJIJ45dnMbBsDqcHNL548ngBT7U9ZDu3ZzkVo5SaJ6k90YZvNmVNryMXwTnAJzU1vE7iMW5PmOwRVxwT6VSj3zOqKAWJwBniuqg+1Jp8MQuLcGE5BhIYrz7VnK6RV7sjvtHa1to3mnXzTncRwq4x379R25rKVyszqDvHZh3pb2/ujb+XJP5iSSHJ4PTkU3TdSjsluHMSyPhdue3J4/Gko6E2Y6RHjtvOkXETnCZOCx9h3HvUKsEHGG3HgCoLy6mup/PuGLSdFA4VB6AVCrsq5UkH61fKC2LEsk8d6IyXCBA2V7nP+eKtLMQAfmz34qg0z8Hccj3pxkd+rj8TS5RNFtrolgeaQ3ORg4NZxJ3fez+NPCFsc5quUlxLpucjAwKRrjgdM96pLHIuSelBL44zRyoOVFk3Um7oKU3Dc5NVCHyMnikUY4Zj+NPlQuVF0XIADAjj1q/abRE1/dZ+zIQFUHBlbso/qewrOsIoJZsSyFFBwSBkj3qfVL1ZnWGAbbeFfLhQendvqTWco3dkVFJak/2qe7vlzl52I+Ve56AD09hRqM+IHtIJsBcG4mHO9h0A9VU/nz6CoZWOj24BYrqFwo8xu8EZ/8AZm/QfWs92JiWKIglQR7EZ4/nRGCbutht23Om8O+J3t2W1ugNiDBKgEr6Eeq+9dtcR2mp2YjnUTRMMg56e4PavFwjNKJoZDFKgwBnG4+nse9dHY+MI7ZUVY5lIGJVJAUn1wOn4VzYjBtvnpbnTSrq3LM6i70gWtjbwmaeS3hneRWQZdFYD88EdfeqHiXTUvWstbW6jkmjAjlbzBumXop4/iBOCO/FKPF8rBWjsMg9DvHP0NYWq66EuI9QFmbaRCQHjZT8x77TkZ98U6Ea3N7w5ThC0o7rUr3yjG7jcowcVzf2yVGlUN8j8Mh71u2Qm1DS7q5dkZFbervIN+OhXA796p2umRXENxIYdzRE7v3u3dnoAMda7qdoKzJxtb6zP2kVYqwS7BBcL95HGT+hrfkaOZNpwR6HvWKBDBIbY2zRMzbTufPNRm/exlEW07UGDk5B9/anKPNscmyuzZiSS3Ba3kKgfwHkGvedFZ20HTiwG420ZP12ivBLe4S5iDxE89R6V73ouf7C0/8A69o//QRURvfUT8j5+uiGuZiOBvY4z7mow3y8028fbeTY6eY386g83rmnys2FLBGI7GnqcqOe1QD53608Ng4HQVVhE6rnOfxzUs1z5ixwooSKMY2g9T3J9Saq+aFySc0xZhu9KOUCS58wQPsfAAziktEM4BdxlNxwe9RsTNvHUbef5VNp5liuXwdkDfu5M9Nvf+VO2gMuPNGJomxv2qu4ep/ziqxHzn68D2pqThnZcDccnI44qKecGTK5PHXFJR1sGyLLsMccGm7h35qm85JXmgSEsOcVXIK5cVl3ineZjO3iqCSnd71J5xLDNHITctrOx6kDt0o88rxgj8KrCVc8kfhRJIMcE80co7kpuGLnigvuHXn6VUkdgeDjPtUwYBeTzinyk3LCFgcqea19Pe3sFkvLjbJKo/cxsOC3Yn2HpXP7yCME+tSfaj5ZiLEoeSM8VEqd9AUralieR53eSZy0jnLs3JJNREKEGcZ9ahM2zkEAdKVplABPIxVcom7hICGIOMNxzVK5SVG3Dlc8+tPe4MrAIDtz0PaljlZuCMj1q0rE3I7TVbiyyEIeJuWRxkH8KtvcabqaFGZrOQ/3/mTP16j8fzqq0Cl964BHtxVeWIEFimD7UcqeqDmdrFttKvrS8b7OguVRPN3wfMrJnrx/kV0fh7w3c65FczW88Maqw3eYTnke1cpZyXNnOk9pMVdOQQcfhWvpvi6702WVhbxsJeXUMyAn14NRVjUcfc3HTlFPU9EvPCTanFEL6aMSIoVWhhCngcDOelec+ItHudNuAk6/P0DAfeHrWyPiApGDpuT/ANfUhqjqniq31OJUawMDIcq6TMSD261y4eGIpytPb5GtWpSktDEspZrV9yq2O4x+lfSuhvv8P6awHBtYjz/uCvnFNbuGGJGmkc/xCZh+lfRWg/8AIu6ZlcH7JFxnOPkFdUlrqjmj5Hz5fgrqFx/10bj8arZIB961btQbuYkAne3b3NVCq5PA6+lCOhsqR7ud3JpejY9qsoq4bgdfSnIq7fujr6VQrlUODHx1qPy2IJUfd61eCruA2j8qmhVQX4HQdvrRsCdyh8/kOqkqZON3sOtRu5STAxj3q8VGBwOn9TUEqruHyj8qaQNkETMNwJxkYOD2qJnbbt/lVoKOeB+VG1euB+VVYnmK4wANw/WpflJyQRUm0YXgdfSrW1do+UdPSkwuUYxtb5h+dKCN3bH0q2irvIwPyoCLuPyj8qAuQEoBwf0pgbORjp7Vd2Ln7o/Kk2qC2FH5Uh8xTkwxB9OKaM4xkVcKLu+6OnpSxou77o/KmiWyjt6Zb9afgbiDVpkTcflX8qkEaY+4vftRYnmKRVGHHbrSsU28n26VoJGm3Gxfypxij5+RfypBzGOIwGyAACKWJHKNg9K2BFGWGUXr6VZihi3n90n/AHyKbYkc4C4OCKV1YjpnNdF5EWT+6T/vkU3yIc/6pP8AvkUybnNeUEPFHlZXpXTLbwEDMMf/AHyKlS2g/wCeEf8A3wKYXOOMHJxmkMLHFdqtpbE828X/AHwKlSytef8ARof+/YouSzkLWFUbcfmIHHtX0loQP/CPaZ/16Rf+gCvJrWxtPNX/AEWDr/zzFez6eqrptqqqABCgAA6cCsZvUuB//9k='],
 'texts': ["VITTORE  CARPACCIO Venetian, 1455/56-1525/26 Hunting  on the  Lagoon oil on panel, 75.9x63.7cm 6 Carpaccio  is considered to be the first great genre painter of the Italian Renaissance, and it is ob- vious that he was a careful observer of his surroundings. The  subject of this unusual painting is not yet completely understood, but it apparently depicts groups of Venetians, including some blacks, hunting for birds on the Venetian lagoon. Some birds standing upright in the boats must be decoys. In the background are huts built of straw, which the hunters must have used as temporary lodging. The  back of the painting shows an illusionistic cornice with some letters and memoranda—still legible—fastened  to the wall. The presence of a real hinge on the back indicates the painting was used as a door to a cupboard or more probably a window cover. It is therefore possible that one had the illusion of looking into the lagoon when the window was shuttered. The presence of a lily blossom at the bottom implies that the painting has been cut down; originally it may have shown the lily in a vase or it may have been cut from  a still larger painting in which our fragment was only the background. Reperse:  Trompe  l'Oeil  ",
  '3\n\nThis painting was discovered only a few years ago. Unfortunately very little is known about its',
  '18\n\npersonality and artistic interests, but he was most famous as a landscape painter.']}
print(response['context']['images'])
####### RESPONSE ##################
['/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD6APoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1eOe6JwZpD6HcaJLuZDtM8h+jVKOQBg5qncIFlZgwyeormTaESfa52GFlk/76NRvdTIrP58hA/wBs01G+YECke38xWw2M9jRJXBOxVOp3D7h5rjPH3jxVaWe8ONk8+P8AfJqUWMwbAQ1ftLMqpLAc/pQr9BPzM2KW/Y/enP8AwI1JJdXS4VnlHHcmtcoyDAIP1pY4yW5OfqKbTYJ2MmCS9kcANMR67jirgW6/56MR/vmtMR/Llv0qMxqFJ7VPKVdlRbe4YgtOV9txNPEL5wJ3P40r4J4YkCpY1WOESMevGMUWSFdsjC/NgSEnvzSFyWKpJnHvTCFjkdySqkcbjVLzBlijflU81irFws+eS2PbNILmEHa0vOemarQXTBGcsxUdRisndukYhSFyetV7RdCXE6TK8HccH3p4AYZB/WucBIAAc+3PStK0uBFGqOxyefpVe0RPKzSXKtk5x2qTIPBH51TW7TOOvuDVuM5UMDkdqaaYNNClD2zj2pQT3HHvUiuvfrRIRj5QKNw2IzIApbPAqvJcblAUmpCd4ZcjJHUGqE2y3xvkAB6Y60mmFx88jC2ySQd1NjlwoNPQxXMZTd17kVE1pIn3WVl+uKlpphdNBJMSeTUcLhZc80iozNtGKtLZADPJbFRa49iRXB6U5cEdajjgcDlD+NSrEc8gj6iqQhwweBW9Gf3Sf7orEiQLkd6248eWv0FawHAwFbOTz71DJbbiz7iB3q8wQLgHiq5kBbG7ArNO5UtCvFGcZAOPXFWNgUDkk+lO3Z4z+dB6jJ59qNUGjK1xKFXarAHvzVUXEoOA2asS2OXJD4zyRUK2mQfm9qave4n2Jop2Y9s1ejDEZ6D1qpFbIg4GWPfHSrynCbQOlVcLEy/d4HSo7gZxtqZJVbEfAwtRuN4Y5AFQ31KtpYrQwrISZBgL0FLJdRKPKXkg1CJlWT5+VXpz1qo/7yUsowD0FZykylHQk1FkmZXB+YjGKzmZoJCxUZx0NMvrgxSCIKdy9SaiVml5Zhk1LV9QvbQZ50iufLkZQeuKsBo0QZZd2OahWHc3FSNEqJuccelTGNhtjkCOwP8AB6jmp/MRmwF244BNZ4uZAcIqge9XYW85c/LnoRVezaQudNlpLaUOuBuU8lh0rRTcq8j5cVnW8s0cgLtlemKtRH96SzMwbkc9K0jIiSZYXcx+UD8TU+0lMcU4BCOAfwp+BnlsZ7GrbJUSlIvkgY5PtVO4sZbh1dPn4x05Fa7xq5we1CRhThTQHKZcFqYATJwewq4lukqclsH3q00KPyy596eiKgAUYFDbDlRQTSo1bId6lFkoP35PpmrpVj06Uu0496S0G4lQW4A+8+PrThGB0qyQepph4HFNisQbK1EACKOOlUMDNX1xsXjtVU9ykYR5BGDUQUZJPGan2kdz0pmxhznr2qEwkriKORjJHuakZlXk4x6UgRgMflxSmIE8jn1xRe4tUKQjn0NQkqCQi59zUpjBHqB61L9m+VSMcjsKadh2bG2ykoXYdOBxTjywZuBSeTKBtWTaMZPFRNG/QTvx14FDeo0mVbpnM2EPFLb3EgGxhuHck0XFsx3KZZGBxzmqsNjEZgC0vr941LSHqJc3USSlQB9etNhv40cYBOevSq13BGk7AblXsCeaghto3k46jnk1KimJyaHTwlpWdjuLc8mpIoljh34G4noTT1MattOG/GpriFDGsgZVUDOM0prTQI76lRY8EneFB70ySTMBjDc564qJwSSVyfqahcukm18H8KUQkxpU9c1YtODkkhqdGEcDIwan8gIOuD6+la82hmoO5Yjnxw2fbFT/ANoSqwCBAB2xWUxZWOT361uW7BIU4XJGfugVndGvKy5HdkRqWXBIzVRt7zl8nBPHNTyuHj3sPm7AU2LJX5gKXNcfKTRmVyuHzg/nTrm7FuwDIct0xSxc8imX1vLKiGPB9apyuLlHm+Vog0eD6jPSpbS488NvXke9ZEUbWz5dQQfpWpazB2CeWFHbFMSLwJJFBwOtHlj1prvGjKrOAzdATyaOZpDsKTxULsI8BpAMngE9aY88vnNEkIPy5DFup9MdRSi381UedF3jnHXb+NTzNvQfKh4+YjFX1HyjntVIIFq4p+UfSt6W5NjIVc9acFXOMc0pyqggUihj781gpGjiOwOhPNKq7jyKXHHpSqpGO5p3Cw7YAenFDtgZ7CgZ702QFxjODRcdip9pdpSQAUz+dKrF2IAxmpfIXdgDmlEe0+4qbhYY8XyFd5B+lVfs7GTJlcAenU1pEowx3phVRzkU73FymJPYq0jBVdvcmqi26q4zGcfjXTqFAFVblHXmJQQeuBzSuHKYccOX+WMk9qml3mIxtCOR2PNX0hcnkYH0qKW2cMeOB3qG2NRRlJEVOCpJoktfOOdoBAxVpoSGznGKcIHwShJY+gqlLSxLiZgVo/oKftnlUbMn2q4bG5YjKN9RVyDT9o3FWBHPWndIlRZlR6ddMwMq+UmfvN/hVyeSVJwC+6MDAK1oTEyKo2EYqSK03wAMmRnNZylroaKJXR1aPc7AD3NPj+zOvEp5pbsLMnkrGUKnqO9LaWRh+aQ5HYUcyHysdFHIchXIX1p6T+WpQndn3qSR3jUsF+UdgM1VSVrqDdHGYs5wWXBB+lL2gOAsgtwSzuB9W4pyTpCytErSknGF4xT1g/cqkxWU9ye5qYMiD7qgD2rTmuRyk5cOVPmkY6gd6bLOFZQiCRicE5+6KhVo7yBlTOw8Ejj/AOvViCIQxrGo4UYyTk0OSGkxYoYo5XlVR5kn3m7mpDnNHOeDilwe2KE0OwbTnnmrK/dHHaq3Pc1YUnaPpXRSe5D0M0hhk54pqqcnBwc+lObBOAeaauATknrXEpWNrAZUTPmsqN7nr9KlVgQCOlUbu0W5JfzGVwQyHP3cVcEi4AG3PfHalGbu7jcVYmwCKjMefakVx0JAx3pHnQYO5frnFVzoVh4Tk+lLsBOSKo3upw2EO+Vx04VeSa5/T/FtxNdSPcQYtCSF2D5l+vrSdRFKDep1xiGc4zSqoK9KrRalayoHSdCp6HNVrzV4oUZY5FMuMgE8fjU+1itQUJM0VYbypXkc4p4bjAUV5n/bM8esPexTt5mSvJyrDvkehrrLfxTZy2TzH5ZkXLQk859vUU1U0G6bRu4GelNdN3AUYriT4q1ZLhWxEYwclNo+Yeme1dZZataX1sJ45AOzITyp9DRzp6g4NFW4tSkowCQav28QVBkY/CpDJG2OVOPfpS+bGR8rj86nmXcmxIMD0NL61Xa6iRdzyIq56k4pj6jZoQGuoAfeQVSncLFnYCOgwaUIACMcVnf27pu7H2qM844zimzeItPhXPnBvQLQncT0LUdkTK7TSFwTlR0x7VZkCKm5yAo7ntXNXPiyIqRblU7bmIJ/KseXV1nLeZcmTnkFs4p8tkQ6h1s2s6fbgBpd577BuxSprGmydJ1H+8CK4l5EP/LVV/GkWaJsgygn0zVWRn7SXY9Bjkt5k3xujr6g8UxihkH7yMR4wV7k/WuHSVFHyyAfjSGaMZYz8jqQelJxv1H7V9j0NERBhVA+lLxXBjXZoU2m9OAM8kdPrVmPxVLGqs00brjvjJpWKU/I7PgUuRjriuUfxpaoo3IN55xvGKoT+MYpvlS4WHuQvWhNlNo7rg96nGMCvOv+EpAXJ1Aqo/MfpXfWcnm2UEg+YPGrbvXI611UL3ZnJ36HhknjbVobh2S446YIyMCkfx5rDgDzo1A9E61zcxzIw689agwp6HgUvYU+xtzyOjHjDVsuVvWG7qMDFRf8JTqxzi/lGVweawQqBsnJz2zVlJbZEO6Ek467qr2NP+UpTl3NKXxNqrlC+oXB2nI+foa0dMuDc7HvdUlZZD8lurtlj7kD+VXdP8OwXSgpYxSqUDH5z/jVPUdLktNesxBavHCjIQApwvzc1zudKXuxVvuNLSjq2W7jVvOkCxGUwp8oTacZHrnrQL+F0Xa00QU/wRnmi30+7kaXy4chpGYc9iTirMOgXxiYeWvVm5b1rB+zWlzZXsW9Jv7W4XzYftMw5G5YjtyPXP8AOpNQnm8mQuwjLKVizgbmx0rnTbapounR28byJK0xLmE5BU9jVy5lZ7yO0eRmSaDCFjna+ciodGPPzReglN8tnuZp1KKGKCTD4ddrjHIYGpF1e3klUKkwBIxkAY/HNVUije7UTDgkvt9G71fFpHIcJbMeP4UJrqaguhCcmCatNeBkjt4/k+87cH26UyWW9jtpmUpnbnam7d+GKdb6bfwO5gspC0jtkSKQNoxt/matppmqy/LMkcaMeduQ2PY54rOXJF9LFRbasYEd94g2EK9/jt8rUK/iJiGKal6Z2P0rcvrA2pVYDLIpX5mecjac/Wq8V3cwg4vVj/2UkZjWqnFq8Yojlltcr3MbpbSAy3VzMBxvYgA+y9fzrBku7lcB2kB9CSMV3WhRzXniK2eSKXaZgTMy4B45/GugTT5L7U7m2ubRPKTOPMjyAP4Tnvmh1eTeNyWr7Ox5It5OQ2J5B/wI0z7ZM3CyOSB3Y16Lrnh7SbRW82zhQ43boyRXGSyaYHIgtJMDg5Y1rTrRntFkOEluzOW6lxnec/Wj7RJjbvb86kdDM/7q2YDPAUE1Kmm3zqStlPtHUmMgVt7vUz17lYT3GMCQgH3o8+UH/WsPoam/s6/JwbWQD3XHWpxoOqkFjYyhfVlxReC3aJfMVo7m4H/LZ8H/AGqVriY5zI+D6tWxb+EdSlVXZoYlIyMtuz+VXf8AhCbgpj7Wmf8AcrF4iinZsrkm1ocxvc/xE/jSeY/I3H8635PB2pRn91LDIPqRTB4Q1c9fJGevz1Sr0X9pEuE+xjBmAByc0jSn1Oa6W28FXJwJ51Hsoya0m8FqsWYonlcDjeetZvFUU9Hcfspvc4lZXycE19F6K2dC085/5do//QRXhN3ompxyvH9iYAcfIBivddG3Joeno6kMttGCD2O0VvGUZaoyaaep4mPD2l2/mSXmpiTyvmaKHAY84wM0DT9Km3sILku2Qu2M4Poa1ZNJ1CxuWghXTRkZXdgPx3+8avW8OuRQLGt5pCKgxghmP864JVGt5fidqiuiMBbPTrRQZLBnbP8Ay0jzn2rWsGsUQF9FEbYJeQxgKgHU9+lTzaXqF5NBLc6rp26I5ASE46g+tTXWjXl2qLPr0DIucqlsADn6Dms3KEvil+LLs1tElsvENwZpIo9OfZIwWHCqgUdMt6+tY0Oo3txeI13E8zL/ABZAyM+9a39gF02TeIbkrt2kKgUEVB/wi2nl0Vr24mQYzvc8gHP880lKiuoWnfYijll+0/urElyMFRNuLDJ61pR3upxkBdOHpzITWhp6WmnxGOKRUQHhViA/UCrRv7fYy+a2TkDrWcnBle+uhhyx39w+/wDs2FXPVi5H9aFstTB4jgTIPHWrRuHWCE5+ZXwc/wB3NXJ7mLckinG1CDx0pNpBefYyxpuokBvMgQnqUjBqT+zb8gBr91HQ7QBVHVvEDWd9Akc8SxBh5wI3EL6e3rWrHeNNEHhbcp5BxwactEpOw+WpbYpjw6biVVe8uXfv+9xVtPBkHJkDkHnmY/0qe1uUimW4JLE9Rj1FX/7bhLkNG3FONVdyHCp2M3/hF7GHbttFck/3S38zV+HRIowAlvHH+Q/lTj4itVkVfJfHOelSP4hgCkpDJkeuBVe0h1ZPs6nYjW0FvdgkDKsCDWttAmkOeoGOPrWJcatBJJuEMobjPIrQsNQS+up49hTy40PPuT/hRGUW7JilTmldokntoZeZEQk8cjNZJ8OIXJUIM+xqxq14qyvb7nR4wkqOmDg5PUHrSnWoQhzau3HIBrOUoJ+8y4wqWvFDE0Bk6SgDrwDUFx4QiupPMa7uI2P/ADxcqD+HercniGNfvQSZPbcKUa8Gj3C2b8//AK1L2lKOqYezrPdGZL4LYRoF1e8wo24YI3HTHTpQPDN7GiqmuPhRgZt0NXD4jyBm0+Y/7VOGtMzH/R8cZzniqliIf0gVCp2DS9BNkuLm6+1Lj5QUC4/AVrLa24yBEuAPSsk63KIywSPgfxNXI6p4j1rULi4tYGaGCM4aSFTyMd2/wp03Gq9BSpzitTqtT1zQbBD9oAeXnEKD5vx9PxrnIPFJuNVjEOlolsw2Z+ZyvuccVQ8PeD7rUmS5vt0cLfNt/ib/AAr0Sy0e0sYkWGIKF7Dj/wDWa0nGCTildkp21ZkLf3GCRDDj/dIP86sf2pcxInyI/TqDmtc20ZbkHP1qhrkc8Oi3LWJ23IUbGPbJH61ywpyv8RpKcX9k57U9YtbaRvNjG8gfIrc5J9K9AsmWSxt3RvkaJSueuMV5XaaCnzzalKXnfkdSAfUnua9UslVbC3XapxEoyPpXoYRQTai7nPXvpdWPJLPw4Fuorj7VK7sQ2VXjBO3qevWuih0dZVkXdJ8jlCTjk/5NaxtkhnsbaNVYKrFi3UKCCP8Ax7FWndLQKShIlmC8di3f6cVzyjzv3jb2jj8JkJoaDjL59cirKaOgGMv/AN9VqMwCFmwoAycelRWDPJZRSSPudxv+gJyB+WKPYxJ9tLuZtzYW1lbS3FxJ5UKDLMzcCsDRb5Nf1KcWVtcCzi4aWT5cH0x3Pf2FdpdRLcQNG2OejYB2n1Ge/vWPoMEdrqGrWcYCwRSxmNOygrz+eKapwSatqNVJPW5KNKjIGN3HqaT+x1ZuY2yOhzW0EyOAKcwxyCKI0I7sl15dDFGioR8ynntuqC4sreM+SFeSdlysatyff6e9a080n+rjXaT1dhwPp6n9K57xVfTaLpkUlrDveSTD3LnPlHsWPvyPSqVGLdkHtZ9zkvEOkxWz3RZIvPkVZFk2sCxBAI5+o459vSu7ttEQQIrLtO0ZAY4HHavN9Z8VDV2iLyQb4lZV255JwPu9e3H1ru9AudZXS4ri8jUFh/qgCcD1K9QT7dPSta1O8VzF88krI1BoMG0LtGB2yaVfD9oDzGp+pNXLS6+1RllQgjvnIP0P+TVoDA5HNYqmkQ6su5kf2Bbbvlgj+uKeNCt9/McefpWuh5IwfagsN3I6Vfs0R7WXcoDR4QOET8qkh063ikZvJj3EAZ2irZcZxmjI3dc8d6XKlsPnb3Mu506Ka4dlijDeWAMrxnJ5rG0ZJTKtpqRt5JZlaS3lT5fMUHBBXHBH6iugvllO14ZSgHEm1ctt9vesTWrCFLcazCXa5tnUxsCSX5Bx+XGB60kk20yk9DYGlQY+4n4inDToFXAjT8qtI+9Q2CAwBweopScj1qHEFM5zWr3TdFEZuYxvkztUKTk9vzOBVTwrLdanBc3F39kMO/aiImDGw6qfXqOe9ReMZri40+/WC3E0SxKhk8zAjO4MSMcnoKzvhneXDx6jZTxqyI6zCdW6lh0x7ba09mvZOS3Dm1Ok126g0a1jmMKHcwG7YCOOSMfTNaVpa2t1befEyvDMu5CB8pBHFcr44he/tylu5Y2yGVwGG1R33d+nQVJ8PdWeaxl0qbcXtcOj9QUY9PwNCpp0+YctFdHXsJLWBBbwiTGAy7sHHqPU1xWoa1PpGuf2lFPNLZu4SS3nyNoOCcDPGO1d3nB61laxplhqarDcgCZzmNguWJHb3H1pLR6ipzSvfqa8ckcyB0dXU9CpyKbcwrPbSRMuVYYxXCeGdZmsdXuLe53LYTudrk/LHJ/QHp6ZFd2JA2CCDn3ocUFSEqcuVnP3GlQsNu1xyDwxrr7aMJawqDkKijJ+lZzMDwQOfUVqR4ESY6bRWuDjaTM6srpHLXbPFPd3Qz8lrtTHUHJP+FGoF/s1l1Z1uIt2Pryand15z/EMH3pBISv4+lRYLj77cbG4CAljGwGPUinxgxQqgHCqAPwFNdsoR6ikMnyD5abTFclLFgfpVCzt5Itbv5gAqSxxYORyQCKsCXAHBqHzgt2MfdKYP17f1pJaj5tDQDHnJFJwcZJquZPb9aasvUGtLGbkWGww+Y57YJqG5toruAwvnB/GgPk9h+NOyMfwj8aVmHNY5608I6fbak8yW0MbDkMicn6eldKkSRKFVRgVXk/1off/AA4p3mY68/ShtX1G22WN23oBzTg5xVcyc5JIpFmGCc0ubURY3jPXrRIiyqyNkqwwcH/Cq3mdqcJiO+Kb1EpWOe1TRPEltmXQNbmI/wCfa8w4+gYjP5/nXNSeKPHumORd6THMBxkQ8fmprvLiIXAKyXExX+6rbR+lUm0WyJJMch+rU1NdYplrTdnDXHxI8RMpUaOIX9VjY/oaytR8c3t5qEd0dLEbxBMYZsBlcNux0ycY+hr046JZ9cOAf9o0r6FZEHaGI6/eNXGUV9j8Rymn1/A4mL4s3JH7zRh+Ep/wqVfisxbadGchuAPN6/pXX/2HZNjKZB9Wph0OwjBb7MH+vb3obpr7P4kXv1OEj+IMNjBe2A0+SSORnAZZANuRjjjmq2l+O7fSpraSLT5FxAsFyisAsm37rD0P8676PRtOXaiWvAGB0qYaTZn/AJd0GT6D/Cjnp2ty/iNyfc4mXx7ZJetqI0ybyruNo5YNyneRj5icfpUOiePLPSLorDZTC3dAHAAyzDo45446j8q72XQdNnfMtqC23Gc0yPQdN+6sAGCfT/Cjmp2+H8RczfU5/wD4Wvb540q4P/bUf4VkyfEFbjxFFqU2m3Lx26FbeBZcBWPVjxyev6V3ieH9PT/lmeP9qlk0axjwVgBHfnmlzQS+H8ReVzg38bodT+2xaI+xgQ8LvkHIwe30PTrUlt4+1C1lUWOjskBJ/wBHZ2df+A8ZX6dK7b+x7TdxEB64Y1INJtA2RGSvf5jS54fyfiW5t6ORh2OveLNYIxa2GnQt0kmyzH6AnJ/KvS7VZBaQh5N7hF3NjG4461ya6bZAZESZPc111uAttEBnAQAflWmHleT0SIlsczJneev4URo/ZifrQ2NwOeacrZwCwA9TXMkkW2PwO+eKYWXYWPSsjxB4hh0CEGaJpJX5RFOMj1zUOm+JLfVLYTJFKMMFaIgBvXHpRJ8q5nsXCnKWiRyWv+PdRtdUmt7OKOOJDtVnXcT71v8AhrXpdb0ZruVVWeF9rbeAcc/yqzf3fhjXFe3mtcOG2qwhG4NjpkdOfwrGs9O1nStPnMJtkjcHMWegPp2zzWrcXCyVmXKFjusj1/Km+bhwMCqF5q0Gl2cUl23zsoGyPkk45qDRNcttdaZLWKZWhxuEgHeoTdiHRlyqbWjNKS8hgXdPMka+5qYSRva/aVdWhxkMrAgivMviVdX9veRRhXW1VBtcf3u9Y/h3xCloogmuJwryKXZZCuR3GOn49a1VKThzjVOL0PYmCOUdTnPQinhwu0HG5jgCqkDxeRH5bDZj5cHII+tMa42X6ID0iZuvuBWG5k2aDZCg4pm844A/KoPtAI5c4pwmBPXj0qiLoZBfrPdSwCKRJIwCQ67cg9CPyqwHYthlxx65qEFfPaTYoYgLkDkgZ/xp5mUdh0poTt0HBmY8EcU7IHXH4VXE0eSdvWgyIeStVYSZMHK5xk59akEjLHuxyeCOtUZL2BJoopMgyZ2HHBI7Z9amMqgjnI9KLA2iYSHP3M/jS72PBX8M1ALhc+gpPtALbdwANJuw1qK2Q2PunqMVmzPK1/sV2wGGDnitJCpJOc/WoDa/vvMLZy3pgAVEldaFwlZu5Y8xQdwBLY5oiJ3EkUjIuQBt9zS79mBxxV+pn6FjdkcHp2prucdKjSXkjHNLl+xHvntQxEUmXOFbGeGUHkCrAkUcAcYqMYUkDGKOwyQTUWG5dCUSL3H510cBP2eP/dH8q5gvgcjNdNb820R/2B/KtsP8TK6HFTEq5IfIp8TvIFQcknFV52y7c96r6jP5Gi3UoO1gmxT0wW4H9a5E9Tppw9pNQW70OA1S01jW/Er6dFcI8DXBMbmQBSpPJBJz07D0rp1n0LRNEaFnmnv/ADG5RdrAnj5SeMYrlJnM0ThQVmjOQQfToRRaX9wb3T31K0+0QNOruyHLFSemM4/rXUl7SNmtuh6WLouhJNSbT/Q1luJLb7BBb2nl5fcZc5aTJ4znj24rr1USLDABxI4G3PXByf6Vg+NptviKJYxgxphQPUNkcfhXSaPGJ9R3hQ5QeYULYwvbP41lPWzPOqO7KGu+HdRy07rbnnAcuSOfbFZmnXml6FpjeXd3bak0hBCKqrk8dSCCB/kVveLdZknEGmxRtHcTzIqK3fJIzkds4rmfFFrZ6HFHZKommK7jPuIJ+q5x9KuEUtEaupKUUn0MjxhNdT3stteXC3EUfTywAob3x1o8NeHLPU9BM93GTLK52uDgqBwMe1cvqtw8kW52Ykt611/h7VTB4atIkZnlVG/cwxGSQgE846D8a3qKUaa5e5jU0djU0+2n8NwgC8E1mSA4kG1kOOo6jHatTTrk3dxLe8hGHlRKf7oJy34n9AKjt7WOZIZ590shAIEvIXI9Ogq2oCEkDArilO7u9wm+Zbalvf3zmpFcdRVRXHBzkU4SAA4PWmpHO0WvPbGAtMeToMc1XMuB1pplzyGp3EWAzdqdlic4FVlkI60vm5OARSbBIZesWNuhAy0wI9sAn+lSCRuPTNVZmJv7RTnkSH8cD/69WSMMQehH60N6DtYSV5liLxKJHUghGOAwzyM9qxfFniaUxxxx2E1r3DAjAI9CK1Zpkt43d3AVea57Tp/7e8S20EztHaksFQHkjGcj0J9acHd3toddCHNF36GroHiSLV4SrgR3CD5o89R6it1JVzk9DVR9A0yC/R7TT4o0jyWmIIx+J71Qk1mC0bbOHU5wAOeOx/KplJX90lYedR2grmxJLgjGfwqvNfwQECWVEz0DHrUFrfQX0XmwOHUHB4wQfQ1zXiSVYdQQNIoMqb1B744q4Xk7GMKSc+WWh18d3G43I4Ydypp/20j7u7FeZaXfT2mrRlCSJHCMueDk16EC3496uacHYyqU+V6FoXG45yc0faCc8moVf5DgfjQJew7e1Z85nYsC4ZhyT7V2toxNnAcnmNf5VwnmEjFd1Z5+w2//AFzXv7V0Yd6stHCSuBM31Nc94l1NXtE06N2Af55cev8AD+QGfxqfUtTFqZzs3OnJUjO36jufQVzOqzQ3mlT6vbyyKVzGA2CWYbQSfz/CueEG2ehg506NTnqq5h/2nLDfxB4lk2/K3OA+fXHSmy3M9mcpKkihxJiP+E9cex9qXSorWeC5+27o5lljAGDwuCWJHfoB+NXLV7CXU7e3PCMCdkeD1U5Bru0i7WNZTlWTlKXoRaPfTLqb3E9zJkw5Uu2ep4HJ4r0jw1qFtpulXt3cNbxXdzIIx+8BDY9DnB5JrzmGzXat5fKsMBTdDbbsNIg5yx7L79T2qtqN4upGC2s4mkYHBUKB34CgfdXB6e3NTKHPLQ53NKPKkdrr3ie207xks1yrOluWjBUZIITGQPXJrA8ReI4JtfhvFXzbdmDFOM7NuACOx9qyb2yMM1rbajuSeSQO+35ikeOnuetTTGxjVY5UWK2TMio4w0nYZx35JpqnBWa1JV5aXsYWqXJv7p5IohBB8oEaNkDt+ddjY6jCGWGCC2lckJKrq4ZIwByWUgEfmc1ykiC8lYWcDRQ8csc9OmK3LLTjFGpyyg43c8sfU1dSyiugXSut/P8AyO6GpRwny9jBR8u7OSPTP+NINR3njIGKwISxG987SAFB9u/51YUkliD7V5/syW4mt9u4wOlOF8MDnj61jFmB4PPfFRNMYzxnPqBVchm7PY32vUPenC+TgZAP1rj9Q1K8EarZx/OTy0mMAfSn2BmQie4LTTnuzDav0FN0tLgk+p2C3IZRSicHpWB9plwAI+M9dwpVuZwc4Az71HIxOKua99NIXtZ4wzeRMCyqM5Ujaf55/CrUl4Gt5jE4LqdowM4bsMViLeSE8YyDxVa0upFup0umzMx3LIR95fT6ilytmkORay1LWr2mr3dvFDJLaKWUGVI24Q+hPc+1RWmhRWyiYXMhvEIMcmcBWHcCg3hkYhQeDVeDWPN1q4sEjZ5EUspGMZxnknoPc1oue1loV7Vt2WhU8TavrLWzxy3zuwYfIpGP0684rZTSru/t4DqFvNbX5RUwuG8w4zjH97qcdqwdXsf9MMX2pZCEDkxj7rnqPfBBrVPiS+g0mzv7q5PnWpcwkn5mBwCTnr6euM1U4Xirbno87pzdSi7K339yNNN1nQ7pntrK7kVm5URkmQ/lW4PD1z4pgUapps2nGLlJHkXIJ64A5/Oubk+JurXtk0rwoDDINroSMgjkMPp6U/TvG+p6lfJENgLuNm1s984q3TqL3rarqeZOUakrlm88LyeHNS8y1uxOuMoZVzj/AOvWtpOpvewSCUBZom2sF6HPQ1s61ZSXemW03IcQhj/n8q5GG8NjI0iQGRZ9oKqQCG7Hn61m37Ra7kzjpodMJD2NHm/L2B7VlfaSC3NNF05BHTB9ayszPlNgTe9egWX/AB4W/wD1yX+Qry5Z8Ic88V6fpxzplocdYU/9BFb4f4mK1kfNN9NcXd3JhnJ3ud7NtHHWrb3ttb+EktFKzGW5yw6HAwW56gHgfhVDVZrq+vHMzllRiqIowqjPQAcCnyWsa6dBtZC6mRnXzFBAJGM5Oc8V1OKdrmtyLUrh7u6EkaNDHJFHlAc5KjH9DVrwyiDXoAWweQeM5z8uPxzUNtf6bLbxw3QuIGRSvmw4fPOeVP17GpdMubK21+0WB2nBnjAkWMxfxjqCTTfwuNhrdFJ7y8ubxnUvLcSZThd2eMd++PyrS0fUrDRrFjNva5mHMkD4kQeg6gfoaq38l7LcNAvl20UTOi+WNpbnBJPUk4plppG/GFLnrk9KJWcfe2Grp3RVe4lub1prYSKufleUglR/jVq201pJBJKzSuerv0rctdOhQ/OOQOhGP0qdo1Kuq5JA4/Cs3W6RFoVo7eOJcY59elaCBXhXdxnqKgnb930HI9KLVx5Cg9c1k9VcTbaLyFf4hyPenM2ASABn2qLeCTgjNPwWXAIOKkzsxr7sgBuCe1KYw3U80zcFIOeB7U8yKRuoBkJRQQdoJ78UvpgYHpTWcLnABHqaXcM+maY2yUONuM0bwehNRb+TwKQnJz6UWJLCcnqQT0Oajnt1kXDFsqcgjqp9RQjqcMRjHFOeQgFRx3OKWqGnchUSySJHnMjEANjAz71IunxFbwJbNKm4LeyqxIZ+yZHYd/U/SrMKCyhWQkm6m/1XP+rXu317D8TWHd6ZeSatJaafevbwuvmPtkZUj4+bd7Y5/SiPvaJ2Oik4wknJX8jSs9Ps9MuvtEwit7IbTI7tlUJ+7x1Prj6019F0/X9btbO31iO4IlKTxqp2IueGB/iyOw9aztWjg1GFLW3u0S2i+4CCzMe7Njuf0HFVYdKWCWWQXEqGQAKViYEEeh4q4xt7zevodVROb5Uko+qNfxf4YXQtTEFmqi3uIgcM3Vhxx7+1cfPbPp7Q3VvIylSGDjqp7GvYNejt/EugaYd7i+ZTJaBl5kZRhkJ7Nxx68V5fBC91ePZSq0aoWLbxyVznH55rSlU93XpucvsnUkoJavY9I0vxhqWv+G4l0zTPPvlKwXJf5YkJ7gn1/SuS17Rb/Tb63i1GYNKHBCQ52L8pPB7n3rqvDGtaL4f0dYJ5xDL9sEkiKjMdmODwOegrP8a63pmpzWt/ZXPnrGNsgVSCpPAyDWcLqXurQVSm6cnCb1RUsrkzwbXOZI+Cf7w7GriH1rkbHULiS+2R7U+U7Vb+L2Jrai1NeUuFaJ8456H8aJ02mc++xsbwa9Y0xs6TZnn/AFCf+givHYZVki3A8etewaWR/ZFl/wBcE/8AQRRR0bBo8Dkt0E8ionVmHr3qncWUajD4YdwecVaupiLiQIwxvPTjvVdhv6njv701e9zoZmmwgkf93GwH161esbJIJ45dnMbBsDqcHNL548ngBT7U9ZDu3ZzkVo5SaJ6k90YZvNmVNryMXwTnAJzU1vE7iMW5PmOwRVxwT6VSj3zOqKAWJwBniuqg+1Jp8MQuLcGE5BhIYrz7VnK6RV7sjvtHa1to3mnXzTncRwq4x379R25rKVyszqDvHZh3pb2/ujb+XJP5iSSHJ4PTkU3TdSjsluHMSyPhdue3J4/Gko6E2Y6RHjtvOkXETnCZOCx9h3HvUKsEHGG3HgCoLy6mup/PuGLSdFA4VB6AVCrsq5UkH61fKC2LEsk8d6IyXCBA2V7nP+eKtLMQAfmz34qg0z8Hccj3pxkd+rj8TS5RNFtrolgeaQ3ORg4NZxJ3fez+NPCFsc5quUlxLpucjAwKRrjgdM96pLHIuSelBL44zRyoOVFk3Um7oKU3Dc5NVCHyMnikUY4Zj+NPlQuVF0XIADAjj1q/abRE1/dZ+zIQFUHBlbso/qewrOsIoJZsSyFFBwSBkj3qfVL1ZnWGAbbeFfLhQendvqTWco3dkVFJak/2qe7vlzl52I+Ve56AD09hRqM+IHtIJsBcG4mHO9h0A9VU/nz6CoZWOj24BYrqFwo8xu8EZ/8AZm/QfWs92JiWKIglQR7EZ4/nRGCbutht23Om8O+J3t2W1ugNiDBKgEr6Eeq+9dtcR2mp2YjnUTRMMg56e4PavFwjNKJoZDFKgwBnG4+nse9dHY+MI7ZUVY5lIGJVJAUn1wOn4VzYjBtvnpbnTSrq3LM6i70gWtjbwmaeS3hneRWQZdFYD88EdfeqHiXTUvWstbW6jkmjAjlbzBumXop4/iBOCO/FKPF8rBWjsMg9DvHP0NYWq66EuI9QFmbaRCQHjZT8x77TkZ98U6Ea3N7w5ThC0o7rUr3yjG7jcowcVzf2yVGlUN8j8Mh71u2Qm1DS7q5dkZFbervIN+OhXA796p2umRXENxIYdzRE7v3u3dnoAMda7qdoKzJxtb6zP2kVYqwS7BBcL95HGT+hrfkaOZNpwR6HvWKBDBIbY2zRMzbTufPNRm/exlEW07UGDk5B9/anKPNscmyuzZiSS3Ba3kKgfwHkGvedFZ20HTiwG420ZP12ivBLe4S5iDxE89R6V73ouf7C0/8A69o//QRURvfUT8j5+uiGuZiOBvY4z7mow3y8028fbeTY6eY386g83rmnys2FLBGI7GnqcqOe1QD53608Ng4HQVVhE6rnOfxzUs1z5ixwooSKMY2g9T3J9Saq+aFySc0xZhu9KOUCS58wQPsfAAziktEM4BdxlNxwe9RsTNvHUbef5VNp5liuXwdkDfu5M9Nvf+VO2gMuPNGJomxv2qu4ep/ziqxHzn68D2pqThnZcDccnI44qKecGTK5PHXFJR1sGyLLsMccGm7h35qm85JXmgSEsOcVXIK5cVl3ineZjO3iqCSnd71J5xLDNHITctrOx6kDt0o88rxgj8KrCVc8kfhRJIMcE80co7kpuGLnigvuHXn6VUkdgeDjPtUwYBeTzinyk3LCFgcqea19Pe3sFkvLjbJKo/cxsOC3Yn2HpXP7yCME+tSfaj5ZiLEoeSM8VEqd9AUralieR53eSZy0jnLs3JJNREKEGcZ9ahM2zkEAdKVplABPIxVcom7hICGIOMNxzVK5SVG3Dlc8+tPe4MrAIDtz0PaljlZuCMj1q0rE3I7TVbiyyEIeJuWRxkH8KtvcabqaFGZrOQ/3/mTP16j8fzqq0Cl964BHtxVeWIEFimD7UcqeqDmdrFttKvrS8b7OguVRPN3wfMrJnrx/kV0fh7w3c65FczW88Maqw3eYTnke1cpZyXNnOk9pMVdOQQcfhWvpvi6702WVhbxsJeXUMyAn14NRVjUcfc3HTlFPU9EvPCTanFEL6aMSIoVWhhCngcDOelec+ItHudNuAk6/P0DAfeHrWyPiApGDpuT/ANfUhqjqniq31OJUawMDIcq6TMSD261y4eGIpytPb5GtWpSktDEspZrV9yq2O4x+lfSuhvv8P6awHBtYjz/uCvnFNbuGGJGmkc/xCZh+lfRWg/8AIu6ZlcH7JFxnOPkFdUlrqjmj5Hz5fgrqFx/10bj8arZIB961btQbuYkAne3b3NVCq5PA6+lCOhsqR7ud3JpejY9qsoq4bgdfSnIq7fujr6VQrlUODHx1qPy2IJUfd61eCruA2j8qmhVQX4HQdvrRsCdyh8/kOqkqZON3sOtRu5STAxj3q8VGBwOn9TUEqruHyj8qaQNkETMNwJxkYOD2qJnbbt/lVoKOeB+VG1euB+VVYnmK4wANw/WpflJyQRUm0YXgdfSrW1do+UdPSkwuUYxtb5h+dKCN3bH0q2irvIwPyoCLuPyj8qAuQEoBwf0pgbORjp7Vd2Ln7o/Kk2qC2FH5Uh8xTkwxB9OKaM4xkVcKLu+6OnpSxou77o/KmiWyjt6Zb9afgbiDVpkTcflX8qkEaY+4vftRYnmKRVGHHbrSsU28n26VoJGm3Gxfypxij5+RfypBzGOIwGyAACKWJHKNg9K2BFGWGUXr6VZihi3n90n/AHyKbYkc4C4OCKV1YjpnNdF5EWT+6T/vkU3yIc/6pP8AvkUybnNeUEPFHlZXpXTLbwEDMMf/AHyKlS2g/wCeEf8A3wKYXOOMHJxmkMLHFdqtpbE828X/AHwKlSytef8ARof+/YouSzkLWFUbcfmIHHtX0loQP/CPaZ/16Rf+gCvJrWxtPNX/AEWDr/zzFez6eqrptqqqABCgAA6cCsZvUuB//9k

辅助函数,用于显示检索到的图像,作为生成响应的源上下文的一部分。

from IPython.display import HTML, display




def plt_img_base64(img_base64):
    # Create an HTML img tag with the base64 string as the source
    image_html = f'<img src="data:image/jpeg;base64,{img_base64}" />'


    # Display the image by rendering the HTML
    display(HTML(image_html))

显示与检索文本相关的图片

plt_img_base64(response['context']['images'][0])

q2:

response = chain.invoke("Woman with children")
print(response['response'])
print(response['context'])


########### RESPONSE ######################


The image in question appears to be a portrait of a woman with children, painted in oil on canvas and measuring 94.4x114.2 cm. The woman is likely the central figure in the painting, and the children are probably depicted around her, possibly playing with various instruments as suggested by the text. The woman's age is given as 21, and the painting is dated 1632, which places it in the early 17th century.


The historical and cultural context of this image is significant. The early 17th century was a time of great change and upheaval in Europe, with the Thirty Years' War raging and the rise of absolutist monarchies. In the art world, this was the era of the Baroque, characterized by dramatic, emotional, and often theatrical compositions. The fact that the woman is identified by her age suggests that this is a portrait of a specific individual, possibly a member of the nobility or upper class, as such portraits were often commissioned to commemorate important life events or to display wealth and status.


The symbolism and meaning of the image could be interpreted in several ways. The presence of children suggests themes of motherhood, family, and domesticity. The fact that they are playing instruments could symbolize harmony, creativity, and the importance of music and the arts in the family's life. The woman's age, 21, could also be significant, as it is often considered the age of adulthood and independence.


The related text mentions that the painting was discovered only a few years ago and that very little is known about it. This adds an element of mystery to the image and suggests that there may be more to uncover about its history and significance. The text also mentions a French artist, born in 1702 and died in 1766, which could indicate that the painting is French in origin, although the date of the painting does not align with the artist's lifetime. The mention of Marc de Villiers, born in 1671 and the subject of a painting dated 1747, suggests that the image may be part of a larger collection of portraits of notable individuals from this period.


Overall, this image of a woman with children is a rich and complex work that offers insights into the cultural and historical context of the early 17th century. Its symbolism and meaning are open to interpretation, and the connections between the image and the related text suggest that there is still much to learn about this painting and its place in art history.




{'images': [],
 'texts': ['31\n\nThis portrait is dated 1632 and gives the age of the sitter, 21. To our eyes she would appear to be',
  '3\n\nThis painting was discovered only a few years ago. Unfortunately very little is known about its',
  'oil on canvas, 94.4x114.2 cm\n\n4l\n\nat which they want to play their various instruments.',
  'French, 1702-1766\n\n46\n\nThe sitter, Marc de Villiers, was born in 1671, and since this painting is signed and dated in 1747,']}

注意:该查询没有相关图像,因此图像召回为空列表。

q3:

response = chain.invoke("Moses and the Messengers from Canaan")
print(response['response'])
print(response['context'])




########### RESPONSE #############
The image you've provided appears to be a classical painting depicting a group of figures in a pastoral landscape. Unfortunately, the image does not directly correspond to the provided keywords "Moses and the Messengers from Canaan," nor does it seem to relate to the text snippets you've included. However, I will do my best to analyze the image based on its visual elements and provide a general interpretation that might align with the themes of historical and cultural significance.


Visual Elements:
- The painting shows a group of people gathered in a natural setting, which seems to be a forest clearing or the edge of a wooded area.
- The figures are dressed in what appears to be classical or ancient attire, suggesting a historical or mythological scene.
- The color palette is composed of earthy tones, with a contrast between the light and shadow that gives depth to the scene.
- The composition is balanced, with trees framing the scene on the left and the background opening up to a brighter, possibly sunlit area.


Historical and Cultural Context:
- The painting style and attire of the figures suggest it could be from the Renaissance or Baroque period, which were times of great interest in classical antiquity and biblical themes.
- The reference to "Arcadian shepherds discovering a tomb" and "Poussin" in the text indicates a connection to Nicolas Poussin, a French painter of the Baroque era known for his classical landscapes and historical scenes.


Interpretation and Symbolism:
- Without a direct connection to the story of Moses and the messengers from Canaan, it's challenging to provide a precise interpretation. However, the painting could be depicting a scene of discovery or revelation, common themes in Poussin's work.
- The pastoral setting might symbolize an idyllic, peaceful world, often associated with the concept of Arcadia in classical literature and art.
- The gathering of figures could represent a moment of communal storytelling or the sharing of important news, which could loosely tie into the idea of messengers or a significant event.


Connections to Related Text:
- The text mentions the theme of "Arcadian shepherds discovering a tomb," which is a motif Poussin famously depicted in his painting "Et in Arcadia ego." While the image does not show a tomb, the pastoral setting and classical attire could suggest a similar thematic exploration.
- The reference to Flemish art and the interaction with Italian Renaissance artists might imply a fusion of Northern European and Italian artistic styles, which could be reflected in the painting's technique and composition.


In conclusion, while the image does not directly depict the story of Moses and the messengers from Canaan, it does evoke the classical and pastoral themes prevalent in the work of artists like Poussin during the Baroque period. The painting may represent a general scene of classical antiquity or a mythological event, characterized by a serene landscape and a gathering of figures engaged in a significant moment. The historical and cultural significance of such a painting would lie in its representation of the values and aesthetics of the time, as well as its potential to blend different artistic traditions.






{'images': ['/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD6APoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDGvMNpKnI3rgj19Kuae3nW0UhYghcdfSq8MBuLFlU/MEPH0qDR5WdmtiepLD+teTJXi/I6Fubb5lidTwCME4rmpWksrhjkq6/KfWutto2MY4OCOd1cxr0ZF8flIBUYzSotc1hu9ilZ/v8AUIUzwXHX0613kcLCNmIUZOcA5rkPDdus+rEk4KRlh9eBXdwIzFVPU9AKqs/eJWw1IHlA2jIFRurKTuXbjityxtmDDeuMnpUeqQgPjHHXgVyxq+9yluHu3MCYKBnr9aou4BJq/cwsdxXJFURDluhzXZFnO9CS2DGUddveteM7hhRz0NU4IZmTAXAPcitKC1aMgsc4qrCuWLfcAFPOK0Y5Rs54NUYhgYI5qZQTzjFZyitzSLZoRtleTUm35MA1UjbCgED0qyjEMM1MKkoS0KlBSWpNFEAcsT1qYrGCWCjNRh1ce49KU8rn9AadebqNWegoRUSreSAx/LWU8xJyTV653ISB0I4rPkU5ziqSsrkt3ZRvIvMhyhI55rPZVOH/AIgT1Hb/ABrUuk3WzAZGMYxVGSyaPaxJYsDwe5okr6oS7FKWeUIGRyNrbmbp3xWXd38jwzMB8gJByc8mtMwNPN5TjaqqGwPXNZ2q2y2VgyKB87+lVTimrik9bFezg3WKsx5x1HrUVq5DkA/JtOCD3q7HGy2MCcLuH5ms+CFCzqX4LdO9a73JuWDOFEeBlt2CatSB5DgNtOaHhTZtC9Oaga48udUPU0rWJvcR5ZhIyO5yccgcVEZCgLbsseDn1qWWWN1O8/MTjKjpTAqHCv1PQ+9Z8upd9CzDcNI6qRkjrtPSrm4+lUbGNVlLM4Y9Mk9qvZX+9+lHkQ0UNHY/Z8jlgxH0rN1GCTS9UEsWVz+8jNX9EWSRpo488MOBVjxFCJNPSdgQ6HH51le07dzqt1L2k3i3Vkr9j68nNY/iVV82I87ipyfbNM8K3BbUDZEZVwXU+mBk/nTvFCsl7ErKynyhwfqamMOWrYq90V/CpxrTdcGI9PqK9BtpkjcFUGR3rz/wuwXWsHujV3cYJJK9AcVNfWVmJabGwkonQ7cLjk0C2a7J35AHRjRptk7FZWyAf4fWtVl8tTj5c158vdl7putVqczLpknmbWG1cctnimLpsMZz19q0ZcmUksW9zUJIzkd67KMpPcynGJF5QVRgVJk7cAUH5u3ApQOAcGutNswasJHjOSKlyOOeKjIAGaaScAA1Vu4rliKZVOTgin/aQx44qqFCiiPmQc1HKVzM1YzkDnFWVjyvDVSDEDjvUkbsp4bOaapyb0Dnih09sQuevqaz2hJP09K05HDDluM9KgkI6gVT00YJX2MxUy2OgpkkKtIG61adcN071GyAjjrUwl0YSRkFPL1iVSB+8iBA/GsbxPASbVQpxkkntW/e/ur+3mI4b5D+NZevSbo/LHZgavmtchRvJEEtqfIjbPI4GB61nR2228JcA8YNb8CNLbRmUqCRztqpLYrC5mDli33Qx4P1q2yEV2O1G2qMgYrDnC/aHOPu5Jy2Dn2rphaJJE7K+DkjkcVi3lopUlWLEN9CexppiWhUiGCrhj1wvfA96mZVCSIQWI681IRDbNHEjYJA4+tadvaeYu5QCD1GKLBcyrYgxBh2OMZq0HbHU1KloIrjywvy4PFb6aVa+Wvydh/FWbXcpeRznhCRBfXkbAFmjBUd+D/9euhv7GPUbeS32ld6Yz79q4/w7cC38RwZxiUmLn36frXpiWiPhgufXnpXm4ifs6131O+MeaB5DYStpurpMQd0MmGA646EVteK54LhopIZFkwOoPrVvxToLW2pyXVuu6OUfNjja+K5C4V0kIY8g4Irshy1ZKomZu8U4s1vCkX2jxFGoJ+4zYHsK9Y0y3VCOARnBzzzXlXgklfFcICht0bqRnHGK9hgj8kcDC9a5Ma37S3kaUkuW5ejUAAYAqG4ZcEAigTDvnioJpFYZAya4oJ3NHaxQuSqr6E1UwelS3DBpT6U1QDXpUY6XOWbEA7UoGe9OIxQFGM5rpjpoYyYwgk0rL8wx1p8aFs47VN5DFwOK0UW0TdIqlSWAGasxWuMl/yq0kK8hRUoQAV0QpLdkSl2KyQkcnhQanVFjX5RUpUYAoAByK1UUiLtldlY9utRuG6VcIGP8ahdBkntXJUpybuupvGaSsUZAe/WosH1q+Yt3J4FMeFVHTNZOm4vUvmTMbUoGms3Cn51+ZfY1yl1e/aL2KJ1YM8ihgOcfSu7kTggDkjBri2tR/wkds2QMSF8H6GpVnKw1tc2vsu1NiOxPc55xVJ3h+0BCTIwyMn17frWi5ZUYrgMAcEjj2rLlt5Dp8hJO/ODt74/pWqVjEpX5nWFWYkMjeWyqfvEf/XqOFGucLKduR8hUfXr7/4VoJZTXr+W5fylGFJ5356nn8qlg0m6MEsUixxhQTER0GeuavYncyIbSLzPLuQpVJApw3I+g711VusKIPKUeX2IrDjsZpnhBQAOCGY4GFz2q9pyXctxHGqyMAdrZzgDtSTtqM1LaCDduMaFs9T1NW/Jbsw/IUqQJDzKcY/hpv2i3z1as3JJ6GiWh5HuMN1FMODHIG/I17PayZRWUDDc5rxudPmdWGMGvTtCmkm0ezn3gboxkk5yRwePwrix1JzSkuh2UZWumbVxbQToyzIrKVIIbpjrXj/iO2SDXLqGMAKJOMdK9dZ1Knj5z0yOn+eK8x8YQmPXZR2YK4P1H/1qywLtUa8h1V7typ4LU/8ACV27dNqsx/L/AOvXs6kMg3H8q8V8OSeT4giXaD5qsn9R/KvYIpW8pcjnAJpY+/tV6DpL3C1JhR61XMigc4FK8mWxjp1qCSLfjnNc0NxyKNwwaVgoOD3qNDg1dNv3AxVd4DuwOa7qc10OeUWOVt3XFDbu1II3jIDcGpkG5+B05zXXCaeiMpRsS2ozHyMHqanAxjtQqgD5RS4J616MI8qscrd2OXjkcmngMKaox8wNSoRgk1pbsL1AgdB1pgbB6YBqQ+Wxzkg0wsFbGKTj0BMViMdBxUO5WbA6UrtuwKqSXCw5Ix6ZNTNwpxvIcVKTsi6y9PQVFIAQQBWZNq/lZGUPPrUZ14qnEakkdSa53UpS1NuWa0NBI/mz+lcfeskeq2jHOFlcN+RrqbLVre5Q5+Vl+8M9K47VHUagXfO0ZIHvnFc9XlTTia003dMuxaos8jo645IEa8s2D19vqauzQO0SGSI+W5yE6+/zH0/wqOxtfs1mE8onZgvnG4k85JrQSJbeJyFYpIpLgjJ+n60lJilFIZbXcDy+UilZCobDenpnvVrDHhcZNZUMqr5awkiNflJI55P51q2TLMplcELnAzwa1Uu5m4lOW1LyKcBWHQY49qvxRPFNFK3LYw23oDT2RXkwMDae1V7zU7e2DAuDjjaOSTTnrsEVbcS8ky5GQABnOargRY6n/vquevNTe5mJ+ZFGflPc00XjYHyislHuU5GP4itxba1Mg/jAbj3FdN4NuEk0v7O5/fW7sAM/wnkH881jeNrYR6hDMM5kjwc9sH/69M8F3oXUp4TgK8XC59D0HvXNfmw6ludlvfsejiQu6FucDJb0rgPHqqup28ibTG8PG0dwT/jXZhNtsG39MDrxXH+OgmLAqMZ3D8OP0rChOLrrl6jlF8mpy+ns9vcW14oyyThhjtgivaUKywiUAgMoYD6142P3Fm8i84yV9M4/+vXslk4NpCPSNcH8BVY1XaY4WSsTxxKy5AOaf9lUg7W5FPjwfT6VIoxyBXHFcju9hvVFRYGOd3QnjJqQ26gdAO1WlHUtxUckZZsgg130+W1kc8rlBoAXBIJ7CniIBcBcCi6ultXCEZbGSPSqzarEwx5QDHvuropzjTZnKLki0dqLyaaHTGS3B9Ky57kyMSMdKoS35UbVcgVr9bb2RHsV1Z0hdTjB4pPMGMda5kaiyrnJweTTYtRPJZ3CexreOKS6GbpHVvcRxJl3VcDvWfPqtunIfccdhWDc6gsjgDJweFJ61X8zzZDhcDvzkVnPFyV7Fxopmy2ovKrSZ+XOKpyXfnuyA7gATgd6pNOU+QuAO2Kow3SR3G1WO0/xE9a4Kk51NWdMIxjojSbb5fmytlT0UDkelVZnteoZmLDIyelRreNOSWIC4yMdD7CsjUrt1lG1dq8Y75FFOMm7Dlbc0ZZ1icoCFBA4HXk03UpAlzaSsFC8EL649ayFu97ljnnueKNSaQ3EBkcuCMgZzxjIrbk95EqWh0sPiplkKHYzew4ro7a6GoxpMv3SOR/MV5Wh9Tz7cVs6ZqepW0flWpIGeWI+X9a0ldLfQiyfQ6y7VIbeQNiNl+bHTPXoawRrU4KtDOqRNyw7k9+vaqV1HdSP5l1eoFUZOCTWLf3MSswiZmODhj3pQcZO0QUW9zeu9fd2dPtKgFuBnFZxvIt4ZpRgnrnNYDFnXLAjd1NMLFSR6dK6LGXIrnRpLG8vMqMDnndVgXUGP9cv51zDS5+tPEnyj5BScAsjufGlqfsdvcZzhyhJ9xn+lcz4ZuRZeJbWRvuMTG3/AAIYrsvESifw/PvOSpVv1/8Ar159bnZqFuT0Ei/zFcVCnai6cjrlO8uZHsnmqR0GK858bX5n1wwjAit1UKB3zyT+td1MjyKBGwUDnp/nivLNfk361dktuUucc54HArPD0YqrzLsEptxsyaRAbG0t+rzOECr7n/8AVXr2kzb41i+UKqgDAPbvmvGNEZ7rWbKNxuWAl/wBzXsWmSoIkkBUO/LH3rPGQlzRivM1jKLi2zZxyQvBqRJACMnNRg5GQc0qtnIP6VhKnKy5iVJdCcsu3PXNUb+8NpErIBuY4ye1SNcwRMFeRQxzgMQM1k6ze27iKMOu7JPB7VUedapCdjPnnZy0jsSxPJPes43GHA6++agvrreAUY9flHrWSl6VlKHv3960gm9WKSsdBPeLHGE6H1qj9pjAJLDC9RWe0zM5dnJHQVVJDFuOo59K1gnsTJJ6mk97HN6EAcGo/tyRnaxIYHHFUIlKMuBuO7AyKivWCscdc960S1sQ0rGlHeIZixxtzxnrVozmUDb8oPGPWuT83Z8+eC3StX7UBp6GNvnI3HnpzTnDYI2sW5y+CRnoeMVmiRt43dB61Bd6mXnIX7o4NUZ7wkgLtwfxrSFN9QbRuQznyXdTtXPHOKheNrt89MVlw3Y8sBlLMMYFW4bq5cnJESDsRk0ODi7oL3ViOZQj7AeehzV2+lX7NZoQyybVVgRyD0zVSKVYyzRDc56uetaOpwn+z7a63I0ku3OOcY6E+9En7yTGloRwabEjFpWZyTjHar7HbGoVtqg4+aqqOVaPGeR1zVTVjPHCXySp7elYcrqSSbNNIrQp6teM8jQq3yhuT61lu4GM9KhZ2cSN/DnNNJJGO+K9GFNRVkYSldlqWclcYwM0xZAW+YDvUbbpFJ7d896fDGTgAUWSRndkhAJyBipQ/A4qNlIA44pQrYosB6P4hZU0OYHJBKjP4158R+9RgPlDjPtzXTXev/2jp89q8CxtuUptOdwB5FcrdNtZiv3s7h7Vx0FLZnRLQ9ZubpYtPlkD4Kxk9cdq8ku5He4d3XBJrprrWpLvRUYsMyYD/h2/OuTmlZpWPWnhoNXuEzY8IW32rW5RxjyTkt25Fem2cTw2saE5YDqOlea+GBNC011EwUn5MnuK7SDW0tLcNK6E54VeKjERbndDjJJWZ0QuzaxmR2woGWJ6VmXvja3iQ/Zo2lfH3jwua5fU9am1V3RI5EiUYwv8zWUFWQABzkcYqYwt8Qn5F6XVZby6kuZ2LOT3/kKtm8llAyHXIBHHaseOFo5eRuYdB1Ga0DI5zvIx2xxiqqW6CjEtzXIRAXG5yMDmsyVwxYj17VIziWLfzhTjn61RUKQWLYU9BnrWdONtTSWpoKFa2MjZJAwoquZVjAHOW6j0q0Hh+ynGVb9MVlS8MSGBXpk1VPVu4TVkrFk3K5DAnjpg1VuCHAZieewpuUSIkMuTx16VRa6jzgZJrojG70M3oPBydpzSCRlDgdCO9Qm4YAbe9Is/XdkcY4Ga25WQN+diQO+elSCNY1VnwWH8NI1xbiDYFZSecjvVRnwc9jVJNiehoWlzFGZCVw579MVOJEkBIIOfSsl0+VWYjn3qzZZmlCIQfxqZRS94pN7GmFHlccD2p19Of7Ft0QgsjHPPPX/69RSboU2s469Ae1LKS+kh0HVzx7VjbVPzLeisWXv/ACxEUjLbfyNYt/fSy5iJIBySM8UCZyscasQwG489ar3Sl4wR1Fa0qaiyJTbRJaQLNAWycFju+gqCR1BG3GzoD7VLZsf7PlQHDMSv4HFVpF2kqewFard3E7cqBG2k85BqzACG71UVwGyRkGrUbptB3EGhkGhHGHQHHNTiEYHyVWjuFK4Ofpiri3ShRz2rnlc0VigbgBs5xg1WuG3KSmeTTN3zHJqWFfMl5PCjNXa2o73LW0rZLGWwiHv0BxmqKoZriOFcAyEAE/zqWacCExfw5ySetRWN4LW5ExUybVIAzjFKKaTaBtHVwwx2VuIUuAFQYGB1PrTjHFPgtMCV6KFOKyYtYhucLNJ5J6fMMj9K1bfRpbuPzYrldpXKsM4I9q5Z3jrN2Lir7IkhsFk8xmlJHJY44pkdvaiQbZQGVurEelNbw7eDkTx4PqSKhOgXkY3ARP8ARjU80X9sqz7F+VoRIHDAY4J3ZzTJJIBAFVweOTnqazWs5g/lmJQ3oMmlitpWz5sqRqOgPBNHIrXuVG/RFlfJlhZIyXlz8qqDVGYeTjccP3Udq0Ip47OFihTcexOc/jWXes808krKBk9qqndya6DnFJX6kct9IyiFPlzwT7VnyPIcq+Rg81oafHuu8tg8dDUN5FI9w+VwwPNdMOVOyMZJtXKhb/SCOxFKsW7kcDPWnLaSs7ORhcdTU4VBGNr54ya0uuhCi+pRlba2D2qOMl3xnj1qaZRI2V601Y/JBPc+tWnoTbUlk8vYAeWHeqsrkYCjgHrTuWz602QHgYFNKwm7kbE4x1pm3ByrFffNTbTjjv0pNvAU9e9O4rEiXs0YCM29emDW2SH0NJER9u4jeem70/KucaNgOB07100a7PDaHOQ+SR6elY1rK1u5cb6mNG8KHJfn0p0pjI+/xWaAwY8Z54p25lBBP4VtykXLNvhCwBzn9KJx83HQ0y2YhmboCKlkGYkPOeQfzpPcpbECBGOGbmpUT5jtbIqm+Q5wcU9c7QQaozuaCZU9R1qyHGBWahbjnirYPArKSGmVyMEk05X8sBhSOMN+NJIQIOvPpSNCOaTecmkiZUJQqQfpTRHI4yqkgHk9q0pbRUtSGO6cck4z3/wobS0BRb1KjIrIMfe7Vb0rXLrTX8qNt0THG1ugrPJIzto25cEd6JQUlaQJ21R0c11PeOXaYEf3UbgUkb3GMK74H+0aybKUQyEZIyfSrguG/gBP0rB02tEaJ3LYWcA7ZCD7NUZjcP8AO+R37moI7suD1FNEzs52gk44xTUZDuiWQLyMZ9M02NVcYLgZ7VEZCVz1J6U/UoEs7pY4Z/ORlUlguMHuPwqktbB0uaWm28K3ineGz0BanXoiW+uCqggvwaxoZPJnSUZ+U5wKeLqSQlnbBJyaj2T5r3Hzq1h8/myynBJAGD6AUyOPDKHGEPPBqwrjO5mwD1FRXAV13RZAIxj0rRdhuOlxWeBeEHOeKhIRsg4qOOB3fbyWPAA5ye1W7vSbvTmQXaCNm5C7hn8qasna5m7tbFMxp/CeagkQqNwq4sAPJb9KkWFWQYIzVc1ieW5lgMDnBppfcSTWnKgVMEDI6GqttaJPfpHKdkRPzMOwqlJWuJp7FZHBODxx1rfshu0CYscqflH1xWbeWEdreRRlmCMwBI5wvFaOoQnSZGSIeZZyn5RuG5T3rOpJSsl1KUXG9zA8k7sAZ6mo3Uh/Wup8PTW8NpeSeSJZHYKmRygwawbxEN4zR5weT7VrGpeTjbYJUrQU77jLXmYKBxtHXvVliphIA5ByDVZTtmQrwelWEAZWBOM96JEIolV3HPHpT1h44qRlAfPUU9JB0xTuQ0NWEjr0xVgAYHyikGW4HSpcN6VEmNIpnLPioZQc4xk1KTiQira27WsQlYfvHPHsKV7FpXJ4EVtMSAYLAbj9TUKNK6TeYTlcJn1NJbLK8++I8KMtnoBUskgaMIMAZyR3zWezsbJ3RnTx+Ww2nhvWiMZb2qS6BwvrmmxY3YrVPQya1JAO47HrW7pKJZaZc3lyCplIWIk4O3qcfWqFokf9n3lw4z5UeV+p4/malgi1HWdEaCKB2WL/AFbDp9Pw5rKtG8Vd2VzSjNKbsrtFeMb23HgO+c/U1o2dnaxXozeRtkFSGGMZ96fbTyRaEluLSMNFxKzjJYn/AArLRlG1sBiDnjoah3ldbGiahaTVyzf2YW/cwzRlWcnjOFGaS8ggeJc3LyTKOw+Vfoe9OgmtnuAu0MCckZ5ArYktdOlt5vKj2bFPzbskkgEVMqjg0nc1VNSTaObWAkdacseCMEZpwPJAyTntSmEoATkVvc5G0hhUknPWm4I6CpeTj5eaR4rgDdsIXGc47UXGnc1tE0m7upY7qHZ8jgru5Jx7envUXiS6STWZC8olkQqrMpyOBz9fSsz7RcSQeWJZBGqH5UOBiq0URnZCTyy9qmMHzc0mDnpZGgIs6dLcIQdrY/DGf61oRqlvo8csMauJBtlDgEhucbe+BxQsWnafbNbzeY7vglgehrp9F0C2TTY7l1M6SR+Yqs2UAPc+38656lVJXe1/vOlUnF6nEOpf72OOOlOtrF5CJwuFQjII+8M8/pWj4jtodMuEMJzHMm8A/wAOaWG4MsLwRgELGVUjvmtfaNwUo7Mx5bSs+hW8SeTDPbzwtFNHu3lQuO461dGjv4iBitFTKjhs4A+pqrd2pXUYrcDzWGDKy/djOMnnpn+XWtzRdfhiSPT9NhCqV8x37scZLH0HQAdauMVGmpt7DnXlzSppX5rFnUPBdlZafZR2kjJcszLJIzZ8zGPy5pLLw1pmlRs1/Ik8sgARHXCg55I9a6OdBfW+mTcny0Zs9RkgVxHiw3DX3mSyABANigfd/wDr8ZrhjVqVZcnNY3UYxjtsc7rlhHY6uwhX9wHyMenXFVp0AuJAp+TqD6it/TryPxGotZECzYLOQPQdc/lWDdARztH1C8A+uK7qUn8Et0c1SCXvR2ZBIVycdjxSrCeWAGPrTHwfu9+atr88XPXHatm7HNLc6Kwg05NpdAQYwSTknPf/AD7VY32fa3X8hWNpjuF2Hlc4OR0zWp5U4421xTgr6s0jM4/bicHHAbNb7+T5EayRlwAQMn1rAnOHOO5rfuisMS5wWxlR7VtU1sXS6lWWRY4ysaKiseg71UfgA9805iZDk9ag2zThzEPlXjPpVRVhybY+7wCWxkHB/OqTybVJHWnzz7o1A7j5h9Kit4mu544EGZZXCKPcnitIqy1M5O70Ol8K2TahGSR+5BIkz0I9K6u41qy00wwKVCIw4Re3em6R4fvtP0IW4jRWYMSzPt5OefWsprJNHtpZ3kt7nU2kC28KHzB7kj29682rbEVHzPRbI64NUY6bsb4s8zTtRa4hAjW4hO3A6g8GuW0giRZlkJIU8ZNd7L4buNWtll1a/d5ZEx2Plnrj/wDVVC68HRaFpLXTXgcHBI24Jz2FOhiqKh7NSu9gnSm5c0loczax+XcSq/UNircokhDsBkYwRnrUVxlLhZA2xWAYk+mKjuI2AL7zycgk9a7d2mTF2joMskZgxPJBrYsbY3MggMqj5Wb5ug2gn+lN0qwAtUmYg+aeD04//XW7ZaEIAZbiZk85dqooydjcZPpk9KwrVYq5nTpuUrHLpdpJGXjjAYHnitTWT5+m289oNqGMQsAOCep/Imp7Dw/bHVJIDvFvCgMmeu49qn1u9A0u302zt4UiV2YbTjJHBz71DqQc4qJaThdSONZpIbTy1I/e5BPfg1ZsolguYYxl5zIF2jtz0quY5pLiNIzmXzMKVPrVu2jm0uVr3YZQhID4ONx711z+F23MoO8l5HQavpztZxCdFQAFlcLy2Se/f+ddc0T2fgmCOymDqsKr5g+Y45zVFr0NoCs8UU1ugVgz8FcnGf1qjpWqIfE8lipxYPB5jr2+QZyPqK8vmnNcrWiOyo4t83UzfF1mkNvpbOSTJGjOvpmorWW2s7IzhFecRs6pjjjBAqt4k1JtS1PezbYlIRPRVBwKr6iU+z7IGIIKjPTgriuuMG4RgzG/vOSM3Utalvolto40tLeQ732k9STnJ9Pauk8PXWmR38NtZiaeEQFJpmTCZOOg/PmkFvap4Jgk+xxTvGNzFxj5iTnn0o8NqqT2tzq1xFbsYHa0iVQM7geQBx0IAzXbVpxVKS8jhhVk6qb1toddbyuif2Z5oiKYNtKOjpnp9R/KuL1/dc6vLbwb7hYxj5Rkk45/Wtn7VcW0IguV8y2c/LIeChzgH9K546kdNurnyCCZF2q46j1xXlYem1JyWrPXnbl1egy2kj8PaTcROVN7dAK4HPlp6Z9a583O9w7DrS3fmuRNIDyTVZSfIX1FenCna8nuzzZVL+7HZFhmwM8c8VbgjYoGwc4FZrtkcjpzXWaRprvbRytuO7b06DPrRN8q1MnqPsIzDZHcAPNwwJ9KuLHhQN46VM1vwAzoeyhelWVtm2jkdKwunqJSaR57McyEVqQP9pheV2GR8oz7VkynLt9av6aCdOlKkFvMPBHTitJrS5tTeojkIpOee1WNEjmZZI0tw+erkZAzn+lQGB7q7EMQ4Pc9AB3rfkuI4LVLO3HlQHAecjG4e1ZVJWXKt2dFJa8z6HP6nZWsIVbZ2eVclzngn0FP8GzW8Hii1a527WDKhboHI4/w/GrV1b25tXngyCrhSp/nXOFXjmJBwVbIP8q1h79NxuZVFyyTse4X4SUTRISoSMmWTP3eOg7Z9+1clpWlHTri7u51JACqpPTaeW/oK0rLX7TUrSxjRGDzANOu7jKnlfxPJPpVvWleZIPJO3zwpGOhXOTXl1OZRcHpf/M6KVlNS3L82zy4lbiNnAbHYEEH+dcz4uvJZ5rbShzgKScc5Ax/9eum8uS5jmQKAvBXPrgVyN5ITfRvOFaSEFVcd16Yrgy5e/ft/SO+tDmVluYmu2qxpBtOcocjGMc9Kimg22aSjkFRzW1rVm9y0Zhj+RYi7N7Cs4DboQcEk72jI9B1r3YTvGJ58I7+hs6CiJpFq8gL5yRkZx8x/KunsI4LwMn3Q+AXHVccqfwNcnoNyi6Cgzko7DHfPX+taOhXUs19c20bgSmB3QN/eGP6Zrlrwk27dGKlK0kiXVxFo9hdWslzvupnJJQda4vVVubZPKupNspO9k3ZZQ3TPucZxWjepPf6fDqEtzvl87yWTvGOxrW1/QLBdMku/LY3USIZSWJ3YPOfcjrXbhaSSd9Wc+Jk1I43Q7gWupQuV3x7ypDe4I/rXcSafNN4duI4Y0SBySGc84zz9BkYrg3gRb17aDo0uE9ucV6jpaNbaM6XOy4WMDI6AnGSKjGPlakty8LqYTafLLo8MEM5UyqjEStgY7ZFc1HdpFeRGBnaVTsYkY4wQf0qe91W7fVLi4Em1pSF2DoB2x+FVYlCXGccngmnTptJ83UuTvKyHagvmxEDO58ACi4Di2R5MhmjBIIxyOP6VteGpli8RwyPF5oQEADqv+0PcVq+KdSt72SW3gdZo3bbGyjk54xz059Pxp8/K1GxNmnc4hEe4sFN5N5dkvmMoXq7AZP64H41RW5llewmLENEEhyP9k8foa1LjRdVt2MN7b3CRwREIGT5QCcnnpyeazLBN9rcr1MbLIPwPX9K7U1KOmpxtOMrs9f12xha2hhyAzL5ae7YyB/OvNCiwajAHHyh8Nn0rvPE935lja3EL5BCTIQfb/8AVXLalbpeL9qiXCuN30buK8fBtxWuzPUqR5olbXbfybSRUQhQQc8dfaubX/UAmt03E01k9nNlztPlk9QayrC388EyfdDZx616VPSLucCg+blKksbcMAdpXniu70i8t4NCtWCnzpECsVPJwcVibAFw33elV2AikiKgjByMHHeoqfvFY0lRcdbnUQ3AnLPGm1UbBGMYz71dDtgcD/P41j6aH+wvhxmZs4PoDWyYlz9+ufq0YzilY86kUFmwK0vD9ytpfGN4vMjmwrj056/hVN0beatWX+iKZGXLvwB7V0z1jY0hG8jb1S4tLaV7S0QZBdWcHdnPv6VlXEtxcQGWRgQuABVQytBeESYZXA+YHpVouvkKB1yc1koctmdUXdWbGRStHDIMZVxg/Wsi44lbnvW4vMGMAfNgVkSRA6l5K85kHHtWsLXZnVjojsdH0Nrk29raOFChWuJDn+LqB+FaHiTUjBrXlwP+7gKpt9lHJ/X9Kpvr/wDYOkRwWu03U+ZHl7KD0A9TjvWTFL5uk3d00vmSTsEZ2OTnPSuLlcneW2xrdc1o9D0q0vFEETnB3JiuL8RSI1yEXGVySR6ntVyG8JsRBFKPM2KyEc89CP0rBvpQZfMYEDGWB7HvXn4HCezrOR31JJwuT6LqE6X32UPvjlBRlbnsaqWcYktbiNmYBSr9OBztJNV7C9isbpbibcchvu9cmpI9QgtorjcjlblcLg4wOa9dwab5V2PO50ncvaLbSx313aKASo37T0yOP61e063uIdaSZAfMj3kKOP4Tx9OawLHUJYt11GxLovluQex6fyrb8PX/AJ17NNPMMLtUAnqWOKPZylPXbqZVJKPvROnsdPtWiezuEXzEKE9OQeePxBrL8SzXBtzbhSsSRsJnIH7xu1VdY1yG01lXn3NCsnkTAdQjKGVh9Dn8KoaxcJd2c0n23zYUULGFVvmJ6Zz0rsSscLberOQM7Lcq+fmDA16TpjSXWixwxP8AvpJ3Qg/Tv+FeYSfLMhPYjNdjpd+1tKXVjsysgP6Z/I1y4yHNFNdDuwb1aMy+RY9VlTIOxiMjp6ZphyGBH8XIp12MXkrE5yTz7Ukm5ym3ooxVLZFPSTNDQj5uorBvEZnHlhz/AAnqD+lXNX0iW1XzWCTQl2CSoOpHXPcVz0UFw7rHCpkkP3UTlj9K7XULWW00m5kW5iljVVleDzMyRHIySPTnnFY1bxqJx6m1NqzuY+m6tf2i+XHPKYAMGNmJWs60gSXXmCIFS8jeMqowN3UfnitW5kij0O1EBwku6RuOSemfpWLDM0E8VyCN8Eiyj8Dn+VaUGuZzSsRiI80LGjcSTf2Va7XLRKrIc9PlOKTS9Xs7ZHivOFkU7gTx7Ee4qppVy17Y39vnIikYowPG0kn+n61QkjWQbGFL2UZc0JdwcpckZRfQ1YYre7uQY5Fk2jJCnn2rPhi8ovGozhj/ADrFk320zBGKup6g4rb0bfPCzuGkODuNayjyRvfQzotzq6kM9x5YJJ2jpT4JI54FLY+YZA/SqepxsyBQvAb8aitCTEVJOV6VXKnG5M6jjOzOijl3WttAF2mOZQZV64J4rsPsz/3h+Vef2c/llmZ8YZSD16HNdz/wlGhtyZmyeT+7rnlB3sjKb5tUcT5jIcFAwB7ioLppZZSUG1T69asycE/WmtkjirXc21asUfsO8Zkdj7CrAtjEnEzAA/x8irltA0znj5V60t1aO0yRx4LMDxmk6mtrjUbK6RnG9ZRs8kFl6HdwTUmjmFL157r5nKnaewNXIdFkZz5xCqOhBzk1ZbQsrmJyP94daUqtOzjfcpRqNqVtjJv5Fu7hn8wYAAANWrezuJvD8KJtUzXLBQzhc8defpRJpdxEkkjJ8sfU5p9zcLLp1nbQqMxglix4yabd0lD+tAW7cjYuY7GwitozcGVvLCsYWHBAwaw9Z1OymSO2sVcHpK7Hkn0FUTbSyP8A61unRBUAtUXH3sjnNFOhFNNu7HUxEnHlSsiZkDSZkJEar2qO4uY5IEVAfl6Z9KU25YncSfqaaLfI7cV0JIwcn0LWi8m68w4Qx49s5HP86hsbu4t7ktEoKltxU9yM4/nSwxBWKliMirlleS6ddie2CGRePnXcKT0baG7SiovoaHivTGRY7wufnSMzREYKZXg/Tt9RVmbTr6Xw5a21tEs0SYdpxgZUj5c/qPwpv2iXXC7ajcoG8l1XdhcnBIH54rT0XVLPSNAKajKs80Z2xwI27cMZGPQetFOTcVzbmFSKUny7HIroM89xLC7RRyxR+YyM2Dg9B7k1p3unzaMI4ZmzlCC3YAEjH6U/R4L6/wBfk1S4j2rIGbceFYk9M1sa/cPBdRR3dukkVzC7bWPzRkHGQeh7Uq17XWpdCSUrM5Hzw8avkELwfemtdoFJ6AdqVNIuLpn+zIWjPzADsPetKw8J3l2zK5jh2nGXbkn2ArOdSlBXlI2Uakn7qIPD+sCw1xbrBJETqvHQkcUx7qUSSzM5Z5kdTnnIYc1vR+ETb3aKjvJJEVaRgAFGe1Gm6fC/iSzsrmJZIGmZXU9Nu1qwhXozm5Qd9PwNfZ1Iw94pardLF4c0eFUAYW4JJ68k8fzNc814NvC8kd61PFMpe/aP+FW2qo/hVeAPyrEaMqMkHB5H0rpoQXIn31+8zqyaly9i34fuhbPqEP8Az0iAH4GopbryL47j+7KhT7H1qfSI4omuZbi1ndpEPkyAHaB3PvWfdRNLKzjlWNacq52Zqo+RJdB9/Fz5o7jn3rT0S6FtYvz8xNVpkae0tw67ECbB746mnLf2kCpCqZROORUzXPHlsaUZcs+e9jW32s+4snPr61l3NsodjEatxanZmM4hj3f7Qqt9qiMmQQAe2c1nBSTNq04TWrREDujUD+Ec/WqwJx0q5HHLOWEaNtByRT/KI4wfyrVNI4Grl8oAGyqt3zmrcVpDHCTLtL4zkdV9qz52iSVSEwCQaUlpZJGdnGfQ8Vxyi31OmM0uhJbOotw2OST0qO7lRo8tkMvQg9qt6f5VqjJKyuTz/u1k6neJu2qoGTkgU4+9OyCUrRNLSrl/LMWzcgbcXLdCelaMjyOp8uVEjX/lo5ySfaudtLgNCQGwuc4x1NXZWuHmEWx92AVGOoPepnSvK5cKnu2LN04+zOv2obyw99w79OlUrSIXdwUJCZOWAHQVMtjLuKhQ8vQ/4Cte20qCzkglLssoUb13ZDe2KUpxpx31Y4pzZBc3dhpqJFHbBm4JCN8zHtk1f03wa9yz3mpq9rFIQ4QMMhT6+lUL82tlq1vPLbRBZJPMZzkkY/8Ar4p0ni27lS7VgWguTkxZ+7/u+gqIqbgnT69Rza5rS6DvEVvDY6s1vZqiQxOAAVGQe/PcYNVHEN9NDbw28aFZWVABwVPTOOTg/wA6zZdUE0zGXzN56se9WNP1h9OuTdRCJ5FUiPf0Qnv7nFbqE0vMhSiW7nTIJ7uSJSLd4zh3x8jD1Udfwqje6RLbZKNux2b5WP4Vd1DxBbfYrcW1zJLcbB55ZfvPuJyD7ZxVRdaNyVe4eR3HAYnkDvTj7VK/QP3cnZlImWNQDnBHWpFVyAeORVi4v7OaJppFbABWNV6k9qyo7x7eZXC7lBBCt/KtY80ltYznyxe5qRySRLtDEL6Akc1JJKrqEcFsdCecf4VGNYjeUMLMbcZwG6VKmpW7j5bcBlHIJHNZvm7DXL3Oq8LaYZred3iTynAUL/exzXSmJIY1RVEQXoAMVw2m+IprOB4l+VScrgA49qgn8QX11NvdjtHGBxkV4lfAYivWlJuyO6nWhGKR0N9f2lvOZBJ/rD+8zyKoTiI3kGo2hwIiWbA44B/nWeGtbghryCQgD5VDcfjUuoapLNplvZWyKoTIOVwFHYD8zXXRw3I0le/4DnVTXkUIng1HWNLtLeBJZwrtdGcZDknP6CpPEEy299HZw28IitNxjcJgndnryehPFVtFP9ja2l9cqX+VgSO2aq6rPNe3080cZ2u3BPTHavQSftEl8NvxOTTlcnvcLPUrSysZjMsjTkFYvm+VQRzj3rCNwN4IK7AcgHmrzaZcPgNkg8gdqU6QVGcE9sV0R5Itu+5hLmfQqXd813IGlcnAwAg2gD0quuGPyIc1sDRH2BioXIzVvTdNiium37WIAxnpjuaHVhGOgvZzb1MFVli6qy59RU8Es0Th1Chv90VqapeCW+YOv7tDsRe4GKZb232sfKox25qfaXjeSFya2TK4u5hgbUxnOcYNSeex5Krk+9XjpEmeMHPPBp39lr6n8qzdSn0HyTM2Rmd8n2xVsl1jO0deeO9TSovlwHaOU5496kQDy+gptCW9jDlguDL5nzHJ5FVZYXJPB966YAc8DrTSiseVB47irUrCcTH0xJI+cK6/7Rxit83yqiESsR0wp6VHHFH5qjYuPpSzIolwFAGR0FZzipO7KjJosw3FvIGEEjxuR8xPWkOoeQjBCjuo4JXrVadF2D5R09KjkVQOFA4HQe9Z+wi9zVVWtire3ct5Kry7cqMADsKrsrxkKF+YjcBVtFG/oKk2rvztGfpXRGKirIzcm3czDbzPlz2GQOmaqvE3mY9fWuqZFMOSoPy56e1Z1wi7U+UdT2qoSuTJGL5ewkbc49KcNwGDitEKPQUxwNp4FWSUfLY42mpRasVV2J5zVmNRnoKvhV3Q/KOh7UpaAtTKELAblJIxT/LOcsCBgZNdJBGn2GX5F6+lIkcZdcop/CsfaGiic+FkUBxkKanjkfjByPete4RVjcKoAz2FVYEUuMqOnpTT5kVazLVv5kKAsVK4Bwe2a0URCu/Krn1FZIH9K3dKAc4YAjPQ1x1oWVzppy6Feey3xfKVaQDg0kNuyRbZow208HFbMKgWTkAAjgH05qnN/rsdieRXOpyfumtktRkNnbq4IViScr6AVKtnHIr5gUYOelTWqrs6D8q0YVG3oOlYylJS3HZW2ObudPVl2bZQuc/KKzX0m4aFi2FxjGDyR712EiL5xG0flWeyj5RgYz/jXRTqySM5xTOQl0spcksQ+BkndwKvwWcccIaPaDjOAa17kA78gfcas6P7tdHPKcdzJxUWRKRF8yxdB36Uf2hP/dWpGPyGmADA4o5E9WS5NbH/2Q==',
  '/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD6APoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3qiiigAooooAKKKKACmu6xozuwVVGSScACiSRIY2kkdURQSzMcAD1Nec+IvEj6yzW1qxTT1PJ6Gb6/wCz7d+9K5MpWRL4j8TPqTNaWTFbIHDOODN/gv8AOsAk9ifzqMNg46VKrDoanci/URZXUffb/vo04TyYwXfn0Y01l57U6NT0xU2GPDSbgfMk/wC+jSmWTOfNkwP9s0Ee1GM0noCVwMkwHyzyjvneeaWOWZs5nm/77P8AjTcYI7mtqxsoBAJpV684boKyqVIwXMy4UpSdkMsLSSWEzTz3AX+ECQjNTz3fkQmKLegPJJck/wA6srcQFfLTAwOBWTdELvkkbCL3ryqtaU5b6Hp0qSivMr3OpPBCzyXEvoB5hGa5ufV7wuxW7uEB7ec3+NPvrkXsoIUqqdOf51mTLvkBGdnT0p07rc0kTHWtRCEfbrnPr5rf405dW1JQD/aN2DjvM3X86z3ZRwASR60wyd9oA9611MdOpoxeJ9ZtLhJo7+43xMCN8hYH2IJ5FexeFPFdr4n0/wAxMRXcYAngzyp9R6qfX8K8I2s7ltuc8j/GprDUrrR9QivLKUxXER4IHBHcEdwfSumjVcHYyqQ5lc+kaKwPCvim08T6d5sWI7qPAntyclD6j1U9jW/XoJpq6ORqwUUUUwCiiigAooooAKKKKACiiigApksscETyyuqRoCzMxwAB3NJPPFbQvNNIscSAszscAD1NeZ+IvEUuvTGGEtHp6N8qHgyn+83t6D86VyZSsO8ReJJNdlNvAWj05TwDwZj6n29B+JrJwsac9KpXU4tYzIwzjgD3rHm1SWYkF/wFY1K3JoldlUqDqvmbOgMqYLbgAO+aZ/aMCHBdMd/mFcwzGQ/Nkr9aVEBwFUAe9csq1TvY61haa31N+TW7Zeflb2DZx+lCa9bqTvXoe1c9IhTOVXFRT4CRuvRiDSVSb+1+RXsKa6HYJrVs3B/MGrMV/bTH5X2/73FcgBwBg5IqNpGRyMkAUKvPvcHhqfTQ7lAGlUkZXP51u3UhSAgYxiuI0e8mlRoyxKLjBPb2rqLU/abYh2J2nAyajEe/BSRNFezm4Mh80oCVJ5rO1Odvs2NxAz0HU1pyo3mNgYzVOW3R8bhuI6Vw9TuRzDOWA/hzUE8jK4BcAenYCta/siu5hznoFHSsW8Ahdd2SzDgdq1hZsiaaRVkmKt15NIr7nwf0qJ2OSSMf0psZAI5OfWt+XQw6l2VlTG1uopMlQwA2ZHBA5/E1X84sQMfd4q2nMfLJEOzMeSahqxRX0jV7zRNSivrGUxzRn6hh3Vh3Br33wv4ns/E+mi4gISdMCeAnJjP9Qexr5yAIbPatTRdXu9E1KO+sJCkq9QfusvdSO4NdkKvI/I5ZQufStFYvhnxLaeJdNFxb/JMnE8BPzRt/UHsa2q7U01dGGwUUUUwCiiigAooooAKjnnitoHmmdUjQbmZjgAU25uobS3kuLiRY4YxuZ2PAFed6p4mOr3fzLJHZIcxR92P95h/IdvrWdSTjFuKuwTjdKTsM8T6je6/IEQNFp6HckR4MhHRn/oO31rn1LAFWXGK6ESxXEeVOR9KzLi2HmEj+VeVTxVTnfPudk8PBxvEz5YUmjZXPBrHn0h1/eI4wOTxzit7y2ycimbJWJQqea6vaRnvuYxjOntsYTWv7kjvt3UGCUwblGFUHPGM1rRQGXfEExzja3oKsrpmU3yMBGq42Zwp+vrXnPEW0Z6fs76o5mEmSIqu1nHHr37U2SB/s21goAORWrNLbTPCiRP5/JIjHQ/yqlMEVpYQTnbkk9h6VrGpfpYTWhTjL+YAGG0etXorb7TfqjA7QNxxVKNQACOgbPPpzW1ohFxeTADogA9ua2j8avsYTbUHbc1La3WNQkSYz2XvWi1ubdFZpcSHkKo6U5DbWco+88mPvDtUE06yPvJxmlVxCekNjOjh3e8y8l/CibpwFVR97NYmpa3EW226lR6mqOq3Ll1RcbMZ681kXE2VBbtwAO9cyjzHW0kWpdSk+Ykkk8YJrOuSXlDHLOBzk9Khkl3SKR69BUTS/vNxb5cc1rGnbVGM5XdhJm3MFC4UDH409E3oRjHfJHSoZJN54HyipoDnBbtWsrpErcWOFt5Izx/FjvVpCuQUTfKeAz8gUzc2PmT5OmB39qYxbaPlbjGMVk7sppLYr3kXl3PLqxfkhBgD2qeIqqEkZ46+lRNExmDEc96lcFY8DGe+Kpu6SM0rFrStau9D1SO+sZNkq8Mp+6691YdxXu/hzxHZeJdNF1anbIvyzQk/NE3ofb0Pevnfac88Vo6Nrd54f1OO9sZAJBw6H7si/3W9v5VvRq8jt0Mpw5tT6PorI8PeIbPxHpq3dqdrD5ZYWPzRt6H+h71r16CaaujmCiiimAVBd3cFlbPcXMixwoMszf560zUtStNJsJb29nWG3iGWZv5D1J9K8w1nXp/EJjuSxjtOsNv6f7TerfyrOdSMLJ9Qs2m10JNd8QTa7c45js0OYoc9f9pvf+VZTNtHApjHYBgfjS4Ljkis6mIjT0Ip0J1dWTW968JwcFO4qaXVE25ER9M5rHmjZJOCSDyaRSoGTmuGapVHzW1O+EakFa5f+3LISdmKnhlB5PWstSN3H5VYRiuCDWco2WhsmPedbaeSVsgNIqs391M84q5c2cDQk7AxwcHJOR61VaTD/ADIsqOMMpHb1/Op768EVmqR/fkXAz0X2FcEk3JWOpWsZttaRw2xugWaZkcCI8AjPGD+Fc8ZJCWd2AzwSea3JphNNBp7ttWMF2KnqetYN7hJCq5IBwK7aN29f6RjU7gZDjI79jWpok3lXLgddoGffrzWWIy+0nrjgVoaUqrekgDkcnPf0rWb90lI6AvubJ55pT83Q02nKMkcd65jROxkaiirPgZzj5iay5o1fJwTxwfSunuLJZ23dD3PrWHdxmNiq9AdufWtYuxL1MgqUGc45qtI4LFj7YAq/Oh6LgsTxUUOmtKxLOOmcA1vGStdmEk72RBF83XkVcQLHjjrTHs44kJL/AD5pYpMR7G5weKmTvqhpNaMtrtSP5hj0zTDyoC45680hHZjj0qAysrbUyx9AKytctstl1AGRz61XedFyTjntVqxt0lgN3dvtjwdq55ODj8BWXMAz5wBnsBRFJtrsRJtJMuWtr9rJlkIjiB/h5Y/4VtNoFjEsly8pcBMrCvHOO5rBs7mS2ZQ7HyyclQetat1rMHk4hYyFhjBGMfWsayq8yUHoXTdNxvIg8P67e6HqC3tmQG6PGT8si91P+Pavd9B16z8Qact3aNg9JIm+9G3of8e9fOaszMSvTNbGga7eeHtSW9gYqcYeM/dkX0P9D2rvpVnTdnscs4cyuj6IorN0PXLPX9OW7tH46PGfvRt6H/PNaVeimmro5tj508YeK9Q8VaofMBis4XZYLcNwuDjcfVj/APqrb0b9/pFs+ATtwT9OK4W4ST7RN8rAb3JOO26u08LXtrHpq27yqJFYkg8ZzXlY+/JddzrwtuazLsqHkEEVEilTirF7qdnFcRwu6hXDZkB4UjsaWNYnjEiSqysMqa4oVGlqjrcU3oyPywTyMmomtfRTj2q2GVOgyaUvkZp80t0Fl1KCxqp5HPep12lcYGKWQLtzsGaQoFQMXGPStFPT3iHFvYQsA4XJUAY9B9am1FRcw2hjO0RhTiT6A8/571SNwG3KqKT0wTgH2qDUdckKqjKAyjHXgVioScvdN+ZJakN5dAyu2Iw/coBisK6lDS8cjPWnTXDXDnAwM/nSeV8vTIrup01BGMp8xLayI0KyKc7RyPerOlzxi/KyHbnBU+tUEiKqyjAVj+dEoaHy5V/hODz2puKd0ieZpJnau6W8e+Rgo9Sai33bWYvlhihtegknfG//AHR1Nc7qjXNxNaFsMjAcdicdDU0MVxqjPc6jK0iQrwp49goHQD6VzxglHmkzWzk7JGpaa5DMximCo38JGealvrfzYPkXJNc7Zx7tRUxxhUDAZLZA/OuxUgp0HFZ4ioqTSS3LjSb1MzT9GjZGllGGBwDngVU1Oe2tMRQsfmGWCtVTULq4tmu7VJGCGUNjPUY4/Cscz5GAMtWlOk5vnk9DFtRFuGYvwGy3QHtTwjK3zdccVGmHdCcls5/+vVuQ7Wx1rok7aGb11Kskz5O04A4pIfN3gRlt7HjFOfBkG4/L/WrGnqrXLSHnaPlyeKmTtElXcrGsrqTseIOigDB9T6Ustvb+WEMQXPXFEa3LvvSInHXsPwq1FYKyCS5kLk87F4xXBKSjrc6+W+ljNTT7SSYDyyQOwPWteDSrSRf3VlGATyzEt+nanSCFIVCxBI8EgD2FC6uixCKIKgUHLN0/Ss51Kkl7txxpwW5n6npVrZWbSRKS5cKSx6fQdqwWADfdPtity/E1xavLuZgcEKRyRmsxE3JgjHNddBtR953Zz1Iq+iNDw1r97ouom5tXGF4kjb7sq56H+h7V6qnxH8PtGpeW4RyAWQxE7T6Z714uB5dxKoPGR0qQhMn5j+ddMK04aR2MJU1LfcR4JYfOcOjDcxCnvzzRb24hmw6Nkjop5qhJITMU3naGY4+prQsL0C+jQqJNpCgHqPU1rUUlcIyjZGq+jR3FyspLIr/M6uen09a3A0EQCoOg4rClt50unmLFgT0GcY/xrUA781wTUna7OiDir6Ehbe+1acCqPg5I9aF0S1v4YPMvSkhXcyE8Fuf8Kr3cNxpOyOWJ3Zvuruzx25ocH0ZSaLDxM/3Tkemajlsbh4iEwr4wDnpVVNQCndMhTHXad1a1veQyqgjlBJGQpPP5VlVdSmrrU0p8knZnI/aZLOQxzoVkHDnuv4VUmxLIXLZB6V12paVb6jh5VYOvG9euPSsK90WWzXdGTIh4GRzmuijWhLyZM6clvqjKVAvA6559qsCMsgI/KmxxlSSfvYycmpJmaGMDI+boAetdDd3YhJJXZBdt9mChWBYjPTpUSCe+Xyyo2HqwGMVYt7TH76cbpD0U9FHv71rwaZLLEJpHKJjKgVMpxgtTeOHctZuyfQpvKkumQwKhNwp2vk8A+oq5Jsjt0h5AZtzc9aiiVU1L7Og+WcZLN2Yf/WpdTjaTzVTdlMAH146VhpdR6bmkWlG63WhQDLFeROqqAhyQelaY8QYKDylY5wcHpXKzl32qCRnhea2dLtkVEaT7iHe7HvjJP8q7Y4aNRpyPPxGK5ItJamnciNpzJOFaVlyB02r6n0FUJdOW5zJFbMR2kLFQfoP8asW8Ru7iGKXImusTzf7Kfwp+X6mtu7eO3jAQbQBwPSoxNeNFqnTSuZ4aE63vVJOxyFrbTNM6uqoyDkZq8ljAzZmlIz6VmyzGO9Eu7aAcZ9qbNfvNwv3R096ylGcnozpUoRWqNGa0sEkATJPuTVm0WOHJhREOfvY3GqsLRm3CTyKs3Vsc8f40SyKqtFESM8ZHasXFtct2aKUV7ySNGOeSeNneTjOBu4z+FWYsbWIyykYHYCqEcf7tExhVGMnqa0bcDZHnnPUe9ctRJbFRbbAMRZSRFcfu25A71lWZVYsmMys3AAFaV3OFDxggHYcZrFtXKQmfLkK2Ao4BJ4FVSjeLFN2kdC6BbL7TIr7WwCSuPpXP3L7JWKkFc8GrWu3E8dtb2e47VX5snqQAP0rEjBYke9a0Kfu8zZlUqa2JWYGYtnrj+VBxk9ab1lIxQzYY8d66TnbM/eqTMxOTuOPzrR0K0jv7x1abYwO7GMlhWJI2ZSDxyTV7TL021wZUZg4GBgAj8a7K0W4vl3OeEldXPRQiKAjDcAMZ9aGhT+E8e9c3Y6/LNIEmKMSMbVGDx3rXjuXZN6oWwOF/xNeTKjOL1PThUi1oZ1xqEml3TTI7tJ0C9v8AP+NXNN8QtPqSrCryRsuWbbk5x05zgD+tYsthqtzcPczBVdjlQsgCqPStnwtfPpd/O19Gkkvl/u2KgnIPr+ddnLFRv1MLu+xpatYu9qbkw7XJySI9oA/DvXD3UvmSsEbBH8Q4wfau11vxXdX2n3MexUUjauB0rhxGE0/zW+8TjHtmrppbkt9GddpGrm4tYULGVokzcPsOTzgY/D+Val5drDpkt3AVkCqSpHT61xGnanJbDNuTG5GCR3qxqd/cXtmE85jHJktjjODjt71jKh75op+6ZqX7NO80x3Ekn8f8K0I/KuJPPUAlRz9awBE7PsKgEHGa1tOXykdOmea2qQSV0VhZN1EpbGjEolmVScBmxWrf3QjiWJDtXGMDvWZp6iW6JIyIxkD1NW5ikEhurgqSBwvYVyVEnJJnpTd2QLYlbYysxEvVcdqqRGSa3lOD8revNKmoSahMQWMcWeo606ydII54ZD+9LZ3f3hV+8k+bcw5ovSOxj3Cqt5Ep9a3Y4sWFwP8ApgR+JNY0sBnkMzHo4GPQHofzrpNLRbm3ZHP/ACzOR9DXrUlaJ8/iZ81S62GXSm219mj++2yPHooUH/Gqut3rtOY14HTFXNULL4oicYMTp6d8GsrU2V9Qk284PWvOrxTxGq6Hfhm/ZIxrkFnw3PQ0+EY2vjgc4qO43G4I49hViOPykAPXHStpaRRm3eTFgDtIWbOAf1q9CuGVi2dxIIqhExDnHc5/Gr1qoeUBuOwwa56htTfQ0UkSNRvYAdakivlVNqKzH2WolgTHC/U+lSyRzQohHQ9CeK4nyvQ6UmtSrdPI4aR0KYHG/r+AFNjWWGwjQtgNKvAHU5qEmW6ulVvlHU88AVNdTbSMnJzjjsO1a2taJF73ZHrkhuLi4mU8IwQe2az7dcpnpitG5UPZ3B6Eyrn8qoxEA4FaU37ljOa9645RmTOOfWmMBuPHf0qcAb8VE27cee9WmYyRzswO9sZPzVc0tM3ID5Abiq4BDE8sxPGegp0Mjo/LbNp+96V6UtVY5Y6M0LbTrmC+4LABjiQjOB61Y1ua4a7WFJT5AHCqePrWcb663l2lLR7uFI4qeO7EsRM0aqA2Qw6fSsHGXNzPU2jKNrI0wf7P0uEW88pkcB5Ofl+mPalk1fdYhgB9oH3Wx3zWdLfRD92JCQBgYpI0WeBnBBwwFTyLeRtzX0iyw811cRneoUnrjpTG+VRu+YZ6Gk2sWyr4z1p/VgnUetGwNN6j7Boxewh1G3eDUifu3aFyokjYqQfXPWqoICKw++DVwnzrvzz0k+8fepluVArGIiTmRSSc8CrltEBGzhwznIyO1Rm2DT+Yz7V9AetWUkiiB2KAP9mplK60OzDUGpc8tEXrWRIrNBHxkZkbuap3L/aZvKLfKTk06ORYoGCbSv1qAMkYJX5mbqx6VjGPvNnQ6buubYiR/sU33QR/OnahKiNHdx5EbrtkApDaiQ73/IcVFdx7rN0QAJxgepraKTkmc1anL2cu3Qq3F/ArB42YHbhlxww/oa1tI1ZIIi7JJJ5mcMgzjnPIrlJ8AbChDd89q3NC0yCVUe5VnDfMFzhVHbPrn0rvjds8KcUlc2P7Uju7uBTFIkykn5xxjHXPrVe6iEscjoSZCM5rcfToEt9sSiFewVefrWOAysyv1HGK48XTlGamd2BnCdNx6nOR5iuNsmd2ck1dCBgT8+adf22X8xQQw6VPBte3V+M45+tRKd0pFRp8snEreVtjLjPXHNW7UAshBAI9agmwIyAMnJx7VHaNk7G9etZtXiVFpSNp5ZCeuVLDOOOajkmXziAmTkBBnpUIZlKpu6kDmpWjSGQOT8x9K5+VI3bbFjg+zxNPIQXfhQD0FUp2eW4UA5yckVNcSl8ckkDIBP5VBAQXLd+gzVRT+JkPsged8zRHIUsCQe5FMAAOMd+tJcLtkDAkkjcaWI9M9TzWiSSujO7bsyYKTJ25FI0Y3Hk9akUchu1LjPOf0qUTPTc5qDcpOMHjn2pp4QBsAE8c1agiMkxK52bcsPWpn077SHaExoMdCcfT+tek5pPU5lB20KsMfnoYgfmXnGOOfSk+yzSuYIVY47Ec4pqI9jI2D823nnpW94VsxcyyXU+9lVgOPXFTOp7OLl0HGHPJRI9P0OZERZYlxKN3zdQoPzH8qZLaJZOZgCiSEjavQc967O4u9MtLaQNFD9oVSgKcHFcPeZmAYKojA6D698965KNaVWTb0R1TpxgtNywoRrQFe4yp9vSo9rbckc1npctbytHISY88c9K0EmDAhegHHNbtOJKkpIiAGR7mr9rDDLuR1BbGRk9qoSDhvXFSWLs14jNwAhomm4mtBLnUX1ZqNAuMADioPsgZwTwAexp/nSO+EC/jUNzfGBtgwTj8qyXPsj1puilzS2HXSFFxGF6Y2kfrmqcEyGXy3+Rs9G/oaVrkkfKxJ75pquswZHjLE8kVfK0tTgrVIyleJoMG+VeTu44qV4kMRQgYIwRWbH9pt3Xy9zx5/wBW55H0NXjdx425KSHjaetZNS0sdmHqwcGp7mTfWDdFbcnbcMke1dDoFhFZ2sbu29n+YkHpVCQq0ZGfu81e0y5hhsN0rbVi6n+lduGnd+8eDmNJQ+A3bqUMhZ2CxqOnoK42/wBXAvMQENEuO3BqxNqbanNhkPkA5jgz9/3c+lY19Ivnkffk6EgYA9gK2rOM1Y5KClB36mulzFdxjacNjO00xInQFIxweQPSsJZJI3Uk4xyMdjXRaM/2tHZjl1689a86rH2cbrY9WlNVXaW5Wa2mXIZctnIGe1QqTHISQQc963n2GYFlzgFRz19vasSdT9pbcMc9PSs4T5tGFWnyO6J3lLBH77hirU042bH+8vftVCZSbbIHQg5qx9mZ3JLbv8KmSj1Gm+hDueVsLznqR6VOFAKoBincRYUDA60vAUlQQfepchpFec4VckDAxnFVg2XB/T2qeZWMbnd+FVkT+8cmrjaxjO/Nc0kxsBLU9EDIpweRmqC8kAtwK1bcA20XX7g/lTgrETlc46G6miD7CQWXbu7ge1Pha5AG1/l9zmnqPkICfMT1NNWbEeI0IbG0jGc16LS7GCvpqE7MzszArkYP1roNN1OW00lYbcAMRnPueprDEUrQ5liIDcDIqeBykag8AdM1lUgpxszWm3F3LKSKPOeTDO64XPOOe1QHBX5375xmnqokmVQw5PWr9hY2zXYN+D9nX5sJ/GfQ+gqW1DVl2ctjm7iXfcNn04qeC4CnryOtdB4mg0CSGO4sSsdyWAeKH7uPfPQ1zc1vhAyeuK0hNTjexk4yi2XDcZQn1FSW7Mijg5bge9Z6B1/iwK3LMxNb75Iw+zggnv2xSn7qNaUnJ76jWuWghLsnOOBWc07SMWcHnnNdhpEFlcPI0rZTy2YrIMlSPfvWS8EW+RRgJj5QR09v/r1jGrG7VjefPNJX0MUNhgynj3rQikEgD9O2Kpywct8wwvVR3FFs5VipJGO1ayjdXMac7SsapcGEjPIOaf5KTQgygMxH5VBbyea+zHBz/KryJ8rexxXNJ8p6uFipxd9UZLeZE3lhiVJyM9aralcHAQfKrtyPcVuzQo4Ax06GsW+tt8a5IDAkCtack3c5cXQcItdCvDPIkZjjHzseTVu6t4rFB5hEl3IM47Rg9/rTLdUtozKg3yAcOw4B9hVVd8sxeQmSRySe5Jrp6HkbshkzkZ/u1oaRP5M53jKYq3Z+H2nR7i6l8tByVHOAPU0JDb+X55Vo7MH5WPDyfT0+tRUp3jZlQrKMrroWZrwKQScg8f8A1xVHzS8m8cnPepBeRXD7VsIyM8EuwP55q0/2c2DNBC0bhhnJzx7GsFRSRvLEOT1RX8uWSPYOPelSO4VgomyPcU9JgeBwR15qykY25Bbd2wa55Sa3OhJPVEM0UhTeZRx26VTWZgSpxx/FWxcpHHZKxBd5M4QH071hlgFznn0pU3zImr7r0LvkSSxFzOu0LuwBnPtUH2Z3VmLqAOw71Np84+ZJB8p6duam8ofvE+6A2APalzOLsFlJXKkQBwK3rWMfY4P+ua/yrEETAkqCFzxmulsYgdPtj6xL/IVtBnNNNHCEJtyXJJ9BT0wqBRnGazJBNIxxuINWYZHgj2SrkZ4x1Fd9hU5q5o+Z5bBlJyOSSBVaS5UsQpjYepapOSM5IH0qtHppeTO793n0xU2XU3m5PRCrKQwPmhSPQ5qxuWUDfdN79TTJLONQV25/GqzWXz8Dj60rJmbjKO6LVzbQmEbJtzAg42mrOnzWqTFbsxeXsPEmcH8qzVsyRxIOe3NTxaNczhjCBJtHO1hUy5bWlISbvdI1be20OZmTzJt/YK4I/CnvbW9soaN3eJ+Mkf55rChtpI7lfMwArc81pNdq0jEJtQ8kZOCe1RKDvo2zSDXVamnbXKQRSKy72cqMBsAqOv64qpczTT7YlQJHngen496zLiaVZfkO1MAj1p4lkdCGlVRjvSVO2pTqX0HBGV5QSG3Lgc+lQxuxGMEAdP8ACmMxTbg5PbHSnoxbqTn61rrYycU2aOnZlmDcgICTWlb9JJW6E8VnaeGCz56ACrbSZGwcKK5Zq7aPbwtoUk35/wCQ6Wbcdqjk9KytQy+I0OWzjirzkxg4++ePpVf+zriR/OBVBtx83aqjyx1Zhi5SlHl6kkFtEwEbvgDnGeDWla2kMZD+XuUc88LWAVMTlc7vTApeZMhmYr6FjiupVUlseNLDyfU09Z1VZojZwSIdxw5BwAPSqotLl0SSWRZYUwoEbZC+1QRwxs6qIwfX6Vv2UULQyRbRGZAAQox0rP2qclF9SnQcIXXQbDYWFsiOd0jsAyqeo+tU9Rd5cRhQkZO4qg/nVq6mhsSURTJL3yf51R/tCX5vljO45PFVWmoq0dzOjTcneWw2KFYxkEksPSpPOeN8r096i82djkJx7CkMVxJ0Q1xS1d2d0dFZGlFqEZhKMMHGPasy7hwdyx4TP3j3+lPFpNwCUH1qbyAQBIY2IHHXiskowd0XK842ZnhmicP3ByKvrIxxJjO8ZOPWqksHlnGQVzSxzFAVwcZrRrmMYtxdmaBkJUKVP1rptPhzptqef9Sn8hXGNO/BHTuK7zS1J0iyOP8Algnf/ZFVShYitK9jlPFPg+48M6h5U3z2smfJnA4ceh9CPSuSKIrnOSB0NfU2r6TZ63pstjfReZDIPxU9iD2Ir578V+D7vwxqPk3G6W2kJME6jhx6H0I7ivSlC2pz3uYkVzsXaRz2JFXEwIssc5qgWESHIBycDFOMmQFyRn3rOx0Qq23LQ8sg4z+dMP3iVyfUCoLcMJeCcc5qy4J6cY5FI0UuaI5CFXC8565qTzAFOCQ31qLyw3s3Yiq8M7Kc5z9e1S4kN8rsyzIFij3MQM9u5qkZPMcg7gD+dOdnZyznNPTdG3AC/hk01oQ5X2CRB93bzxg+gpiwE/xH8amETSEnax+tTxW2/wBTzScrBuyoIkQHe7N9BUsaDP7sEGrSxsu/gBRxuxmoGbYeDkn2qea5SVi/FIsdqyscOxqaLiMP94ngD3rFlnKuO1aelT+YMPxtJOaylFqNz0KOJ+y+i0Nu3tYYbczzcvjr6fSsbUr95Dt+7GOFFWrq9MoC5+ROgrOCeawmfp0QevvWNKDvzTJlzTdolJmbftb5frUiKdvsKfcBWlGeualf5Yh2GK6WzncbNjrLG9ielaayAnHQY7Vk2hAyCevIqyCfMAzXPUjdlRdkR3RKS/ezkknNIiiRlAOGNS3Sqz9s4GKhiUq+c8imnoK1pWNNGEJ8u4XGDgOv3f8A61WYo1d2PDIT1FIrAjLc55qJVZXYwHZzyD90/UVxvU6FoF6EVAY02ndjgmsqXLtznrWtNcIYRFPHskznnofoaqSIvPOAK0pOy1IqRvsWLDR4r2HzGmcN02njP41TlW0SUxoGYKcFh/8AXrQs5nW3QA9D2qpYaddapqS2dpCZJZHOFH16n0HvTp88pu7M6iikrIl021lvL+K0s7UzyynCr/X2Hqa9ds/CT29jbwvdR7441RsISMgYq54Y8LWvh2zwoEl24xLNj/x0eg/nW/XqUcMoq8tziqVLuy2CqGsaPZa5psthfReZDIPxU9mB7EVforrMj5v8VeErnwvqJgmUyQvkw3AHDj+h9RWBlV5Iz2r6f1nRrLXtNksL6LfE/Qj7yHswPY14rrng8eG73ypkeYMSY5TgK4/xrmq+5qaQTk7I46OZEU7yBn1Pap45PtKlYCpYDPPfmtOfw+t3cC4A2oSMoSADWTcadJYNJOzrEwPyKDkgZ/SsY1IS0T1NZKrBeQjzZgdtyhhkEckrUEU1vFbF3jd5nPAHAAxwfzqOS5a4kDFVD9wOBUbyD5QMk+uMYrSxk5tu7JTcym0EHlrhiDk9SatxyNBDuljAcH+Lv9Ko78p8qj5R175q1FbExJMVfpyaUkuoRu9i2l80kA2cZ644qEXTLk7iWzVVzF9pHlu/l7csB6+lN8uVwDjFJQSLUmWZLyRl27uOpqu0jN3JFLHbEkl8nFWVj2pk4HpxRotitWVUhaRstn/GteJDaWqqfvvyfYVFbW5eQO/3B29aluZgz7j34rOb5nY2pxsrkb75cE5EWf8Avo1K7+UqA84GB7Vc8uNoVUHjaMYqhf8AngIilSp6cc1nGXM7Gz5oLmRUV2e4wSCCw/Crd8NhCA1WhtpftaBhzkHAp9y5kckcHPFaNXkjBP3XcnghLKoIwPWppbd1AMb5PvVAXO5eQ2fQU5Z5RjarfU1m4ybK542JjDOG3swb8aduMeBJGQR0Oaj8+c9f1FPMjPzI270BpNMV10NWO4t5EADYYDv3pkbhpGCkdu9ZIkAft+FTJKUfzEYA+tYOja9jT2t9zauYz5DF8MpFZcmUj2qO+eaG1GRk2uQUA6AYqTT7W51m+is7KJpJpDwo6D1JPYUU6UlowqVIs1dBsJdSuorWFC7sc4Hp3NeueGPC9r4dtW2gSXcvMs2OvsPQUeF/DFv4csAikS3Tj97Njr7D0Fb1elh8MqbcnuzjrVufRbBRRRXWYBRRRQAVS1TSrXWLJrW7jDKeVbujdiPertFJpPRjTad0eAeLbDVNA1BrOYFYm5jnQcSL7Ht7iuUZ2L7j84HQMe9fTGuaHZeINNksb2PKNyrj7yN2IPrXz34q8MX/AIc1R7a4XMZ5ikH3ZF9R/h2rmdFQ+EuU5T1kc/zHIec5yMUrzMyhQi+WrZxUZLFgpJGO2KQjCleSScZ7U7EF1mjlttyKse4ndt6VNY3TGMIcbMfSqi27bdgJx6YqysZSPDfKOnNZtK1jWF1qTzfZyceWPopAzUZbO0DAUdBTBDleGU4PODUiIoBLcY5x70rJIu43eM4JANOPUAj9aiMQWTcxyTT1yV3YAoBNs0IJlkjELfLzwaZeQhXLIcharKegzVgyYADghcYzWVrPQ3i7qzK8MkkLnDMR7VYEpeQFs8c81HJHbmNikzDvxxVAIxz+8bHvVWT1FKThoaZdItzsw+deDVJ5Ebb83PaowSn8Qx700orPyQfrTUbEOdy3CFwQZCM84xTicYIkGKhSJgvB4+lTLGcfeHr0qXYaDeCcGT9KVmXHVj9FppcqdqsSfao3eRupNKwN2Fzz91vxpQ/GAvH1qIZPfP41oaXpV5q9/FZWURkmkOAB0A7knsB607EXDTNMvNYvorO0hMk0hwAO3uT2HvXvHhPwpaeGNPEaYlu5B++nx94+g9FFL4U8KWnhiw2JiW7kH76cjlvYei10FdlKly6vcwnO4UUUVsQFFFFABRRRQAUUUUAFZmvaDZeIdMeyvUyDykg+9G3qP881p0UAfMXinw7feG9Xa1uk4PMUoHyyL6j/AA7VkKQ8mMY2mvp7xF4esvEmmPZXif7UcoHzRt6j/DvXz1r/AIYvvDuqPZ3igd0lA+WRfUf54rGcbFLVmcZzECyk56VWdpZlyecHk1P9lOcscimSF13Rx8JwWGO9ZK3Qp3Ik3Lk5wfSpkaRuQ2fSohE7FmGdvrT4pfLH3fm7U2JXLBWTYdxGAM01SR1xio0R5yZCcelWYodj5ByR69KjY0V2R5YsG6VZWRhFhzmicuDkjPue9UxPIko5+XPQ1NuYu/KSsVxnOfpTSSc7VqV03HcpUe1BIBHmMCTxwMUCsRLAJcB2I5/SleKNFZc854IFSP8Au23KahklaRc5x7UasNh6SCNTyfzpyy99tVQT1xzTgWyCT17U3ELlsTLgcYpjEMfSoQTV/R9Jvda1GOxsYjJLJ+SjuSewqVHXQHIXSdMvNZ1KKxsYTJM5wPQDuSewFe++FPClp4Y0/wAqPEt1IB505HLH0Hoo9KPCnhSz8L6cIYsSXLgGacjlj6D0A9K6CuunTUdXuYylcKKKK1ICiiigAooooAKKKKACiiigAooooAKyfEPh6y8R6a1pdrgjmKUD5o29R/Ud61qKAPm7W9DvtA1Z7K+TBHKOPuyL2IrGkgZCQDu38g96+mdWsbS8ij+1WsE+1vl82MNjjtmsg6JpPP8AxK7L/wAB0/wrndOz0NL3Wp8+xkgbDEMetMlRmcHaAMc19ANoek8/8Suy/wDAdP8ACopNE0nj/iWWX/gOn+FLk1A8E3MF27cAHNTpc7WBK/jXtkmi6V/0DLL/AL8L/hUTaLpX/QMsv+/C/wCFHImNSaPHjIr5BAwwyDVCVOSV9a9sOjaXj/kG2f8A34X/AApp0XSuP+JZZ/8Afhf8KFTSG5XPFVZ8Cp1KH7ykmvX20bSx/wAw2z/78L/hTDpGmDpp1p/34X/ChwQKR5Gqqu4gHJqIqee1evNpOm/9A+06/wDPFf8ACo20nTcf8g+1/wC/K/4UuQfMeRqCoJPU9KesZOM16m2ladj/AI8LX/vyv+FIdL0//nwtf+/K/wCFDgK559o+iXmtajFY2MJklfueAo7sT2Fe++FvCtl4X04QQAPcOB505HLn+g9BVLwVaW1vb3bQW8UTGRQSiBSRj2rq61pQS1Ik+gUUUVqQFFFFABRRRQAUUUUAf//Z'],
 'texts': ['16\n\nThe theme of Arcadian shepherds discovering a tomb originated in painting with Poussin in the',
  'Flemish, 1488-1541\n\n20\n\nWhen Italian artists of the Renaissance came into contact with paintings from the north, they']}

显示检索到的图像

for images in response['context']['images']:
  plt_img_base64(images)

以上,利用多模态 LLM 和 Langchain 以及unstructured,成功地从非结构化数据中实现了 RAG。不仅利用了文档中嵌入的图像信息,还利用了文本信息。

参考原文:

[1] Plaban Nayak:Multimodal RAG using Langchain Expression Language And GPT4-Vision

相关推荐

豆瓣8.2分的《天才枪手》:几个不知名小演员演出好于91%的犯罪片

青春电影总离不开一个主题——成长。《七月与安生》,是闺蜜与爱情的选择之路;《悲伤逆流成河》,是青少年时受过的伤如何在未来与自己同行;《致青春》,是那些我们带不到以后的感情该怎样在当下消弭;《狗十三》,...

这几部“蹭热度”的国产烂片,看的“尴尬症”犯了,你看过几部?

电影有好有坏,观众有吐槽也有爱。好片看得不多,烂片见过不少。什么是好片?什么又是烂片?影视行业越来越商业化,随之而来的就是很多不走心的电影出现。有些电影靠着“蹭热度”让观众满怀期待走入了电影中,最终观...

仅有松弛,“松弛感”是无法成形的

要说“松弛感”,白玲似乎不是一个典型的形象。在《星加坡故事》这则收入刘以鬯南洋故事集《椰风蕉雨》的中篇小说中,“我”邂逅了歌台佳丽白玲,并参与了她戏剧化的命运。整体上,白玲被赋予了歌伶典型的跌宕命运,...

韩国女星「朴智贤」三部破尺度电影,香艳刺激,一部比一部精彩!

国知名女星朴智炫【Ji-hyunPark】三部破尺度电影,香艳刺激,尺度一部比一部大!这位韩国小姐姐不仅颜值爆表,演技也是杠杠的,《禁忌童话》《昆池岩》和《隐藏的面孔》每部都让人看得停不下来!第一部...

小说:总裁叫住小秘书:你胖了。她看着怀孕5月的腰发怒:都怪你

车内,南玥缄口不言,林梓昊看着她无神的双眼,眼中闪过一丝晦暗。“你倒是嚣张,还敢再次逃走,看来就算毁容也不能让你学乖。”林梓昊无情开口,撕开南玥此时内心的伤疤。南玥被他冰冷的话语刺伤,悲戚的质问道,“...

纽卡球星特里皮尔深陷桃色风波!妻子已咨询律师,婚姻危在旦夕?

近日,《太阳报》一则爆料掀起轩然大波:纽卡斯尔球员特里皮尔竟被拍到在夜店亲密搂住美丽金发女郎。5月11日,他与一名金发女孩从纽卡斯尔夜总会离开被拍;上周五,又在伊比萨俱乐部与另一位金发女郎亲昵相拥。...

苏轼看到友人的妻子漂亮,羡慕之余写下了一首词,感动世人近千年

声明:本文内容均引用网络资料结合个人观点进行撰写,请悉知。常羡人间琢玉郎,哪知道这话是苏轼写给朋友妻子的。传开了人都说他风流,其实不然。说白了,他写的不是情,写的是佩服,是感动,是在苦日子里看见了光。...

洪森亲王的漂亮妻子被网友称为唐朝美人,却不如英拉风姿绰约!

柬埔寨的洪森亲王真是一个幸运的人,简直是天之骄子,就如穿越剧中女主角一样,开了外挂了,得到十全十美的幸福,事业爱情两得意,不但统治柬埔寨38年,而且妻子还特别漂亮。洪森亲王子的妻子就是文拉妮女亲王。文...

二十年后,出轨离家的姑父后悔了(二十年后,出轨离家的姑父后悔了吗)

爷爷家门口的槐树又开花了。姑姑坐在门槛上择豆角,白头绳把灰白的头发束得整齐。她指甲掐断豆筋的声音很轻,像极了二十年前那个雨夜,姑父摔门时震落的槐花。一姑父十三岁那年没了爹,亲妈改嫁后亲戚们都躲着他。是...

湖南男子给妻子惊喜,却目睹妻子上了别人的车!结果太意外!

最近网上有个事儿火了,湖南有个男的,他老婆回娘家了,他想给老婆个惊喜,就偷偷开车去接她。结果呢,他眼睁睁地看着他老婆上了别的男人的车!这事儿一出,网上都炸锅了,很多人都说这女的肯定有问题。这事儿其实很...

被妻子发现太阳报:特里皮尔被拍到在夜店亲密搂住美丽金发女郎

直播吧6月17日讯《太阳报》报道,纽卡球员特里皮尔被拍到与两名金发女郎外出聚会,目前,特里皮尔的妻子夏洛特已经得知此事,并正在寻求法律咨询。消息人士称,真人秀节目明星克洛伊和她的朋友们被介绍给特里皮尔...

别人家的妻子真是太漂亮了!(别人家的老婆真的好吗)

醒面十分钟,期间多揉两次。百年技艺传承、地道天水浆水,体态清亮、口感清香、酸味柔和。

男人为何总对“别人家老婆”心动?真相藏在人性褶皱里

常听人抱怨:“结婚越久,他越觉得别人老婆好”“同学聚会上,总夸别人媳妇有气质”。这种“别人家老婆滤镜”像婚姻里的常见病——但与其归咎于“贪心”,不如剖开来看:这背后藏着被日常磨平的情感渴求,和未被看见...

苏轼看到好友妻子非常漂亮,羡慕中写下一首词,感动后世近千年

苏轼,这位文学巨匠,因其独特的视角和深厚的文笔而广受赞誉。但有一天,他邂逅了好友的妻子,惊艳于她的美丽。这份突如其来的感动,让他心中涌起无尽的诗情,写下千古绝唱《定风波》。北宋年间,苏轼凭借过人才...

禅诗赏析:智闲禅师《击竹悟道偈》

标题:击竹悟道偈作者:智闲禅师正文:一击忘所知,更不假修持。动容扬古道,不堕悄然机。处处无踪迹,声色外威仪。诸方达道者,咸言上上机。赏析:智闲禅师,起初在百丈禅师座下参学。一直参到百丈禅师圆寂了,还没...