百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 资源推荐 > 正文

利用GPT4-V及Langchain实现多模态RAG

jasimen 2025-05-06 19:29 28 浏览

多模态RAG将是2024年AI应用架构发展的一个重要趋势,在前面的一篇文章里提到llama-index在这方面的尝试《利用GPT4-V及llama-index构建多模态RAG应用》,本文[1]中将以另一主流框架langchain为例介绍多模态RAG的实现。

大体流程:

1)使用多模态embedding(如 CLIP)处理图像和文本
2)对于图像和文本均使用向量检索
3)将原始图像和文本块传递给多模态 LLM(GPT4-V)进行答案合成

具体实现:

  1. 安装依赖。
! pip install pdf2image
! pip install pytesseract
! apt install poppler-utils
! apt install tesseract-ocr
#
! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)
#
# lock to 0.10.19 due to a persistent bug in more recent versions
! pip install "unstructured[all-docs]==0.10.19" pillow pydantic lxml pillow matplotlib tiktoken open_clip_torch torch

2.下载数据(测试文档点阅读原文查看)。

import os
import shutil
#os.mkdir("Data")
! wget "https://www.getty.edu/publications/resources/virtuallibrary/0892360224.pdf"

3.提取图像并保存在所需路径中

path = "/content/Data/"
#
file_name = os.listdir(path)

4.使用 Unstructured 中的 partition_pdf 方法提取文本和图像。

# Extract images, tables, and chunk text
from unstructured.partition.pdf import partition_pdf


raw_pdf_elements = partition_pdf(
    filename=path + file_name[0],
    extract_images_in_pdf=True,
    infer_table_structure=True,
    chunking_strategy="by_title",
    max_characters=4000,
    new_after_n_chars=3800,
    combine_text_under_n_chars=2000,
    image_output_dir_path=path,

5.按类型对文本元素进行分类

tables = []
texts = []
for element in raw_pdf_elements:
    if "unstructured.documents.elements.Table" in str(type(element)):
        tables.append(str(element))
    elif "unstructured.documents.elements.CompositeElement" in str(type(element)):
        texts.append(str(element))
#
print(len(tables)
print(len(texts))


#### Response
2
194

6.图像存储在文件路径

from PIL import Image
Image.open("/content/data/figure-26-1.jpg")

7.对文档进行多模态embedding入库(图片及文字)。

在这里,使用了 OpenClip 多模态embedding。为了获得更好的性能,使用了更大的模型(在
langchain_experimental.open_clip.py 中设置)。

model_name = "ViT-g-14" checkpoint = "laion2b_s34b_b88k"

import os
import uuid


import chromadb
import numpy as np
from langchain.vectorstores import Chroma
from langchain_experimental.open_clip import OpenCLIPEmbeddings
from PIL import Image as _PILImage


# Create chroma
vectorstore = Chroma(
    collection_name="mm_rag_clip_photos", embedding_function=OpenCLIPEmbeddings()
)


# Get image URIs with .jpg extension only
image_uris = sorted(
    [
        os.path.join(path, image_name)
        for image_name in os.listdir(path)
        if image_name.endswith(".jpg")
    ]
)


# Add images
vectorstore.add_images(uris=image_uris)


# Add documents
vectorstore.add_texts(texts=texts)


# Make retriever
retriever = vectorstore.as_retriever()

8.检索增强生成

上面的vectorstore.add_images 方法将以 base64 编码字符串的形式存储/检索图像,然后将这些信息传递给 GPT-4V。

import base64
import io
from io import BytesIO


import numpy as np
from PIL import Image




def resize_base64_image(base64_string, size=(128, 128)):
    """
    Resize an image encoded as a Base64 string.


    Args:
    base64_string (str): Base64 string of the original image.
    size (tuple): Desired size of the image as (width, height).


    Returns:
    str: Base64 string of the resized image.
    """
    # Decode the Base64 string
    img_data = base64.b64decode(base64_string)
    img = Image.open(io.BytesIO(img_data))


    # Resize the image
    resized_img = img.resize(size, Image.LANCZOS)


    # Save the resized image to a bytes buffer
    buffered = io.BytesIO()
    resized_img.save(buffered, format=img.format)


    # Encode the resized image to Base64
    return base64.b64encode(buffered.getvalue()).decode("utf-8")




def is_base64(s):
    """Check if a string is Base64 encoded"""
    try:
        return base64.b64encode(base64.b64decode(s)) == s.encode()
    except Exception:
        return False




def split_image_text_types(docs):
    """Split numpy array images and texts"""
    images = []
    text = []
    for doc in docs:
        doc = doc.page_content  # Extract Document contents
        if is_base64(doc):
            # Resize image to avoid OAI server error
            images.append(
                resize_base64_image(doc, size=(250, 250))
            )  # base64 encoded str
        else:
            text.append(doc)
    return {"images": images, "texts": text}

使用 RunnableParallel 对输入进行格式化,同时为 ChatPromptTemplates 添加图像支持。

from operator import itemgetter


from langchain.chat_models import ChatOpenAI
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda, RunnablePassthrough,RunnableParallel




def prompt_func(data_dict):
    # Joining the context texts into a single string
    formatted_texts = "\n".join(data_dict["context"]["texts"])
    messages = []


    # Adding image(s) to the messages if present
    if data_dict["context"]["images"]:
        image_message = {
            "type": "image_url",
            "image_url": {
                "url": f"data:image/jpeg;base64,{data_dict['context']['images'][0]}"
            },
        }
        messages.append(image_message)


    # Adding the text message for analysis
    text_message = {
        "type": "text",
        "text": (
            "As an expert art critic and historian, your task is to analyze and interpret images, "
            "considering their historical and cultural significance. Alongside the images, you will be "
            "provided with related text to offer context. Both will be retrieved from a vectorstore based "
            "on user-input keywords. Please use your extensive knowledge and analytical skills to provide a "
            "comprehensive summary that includes:\n"
            "- A detailed description of the visual elements in the image.\n"
            "- The historical and cultural context of the image.\n"
            "- An interpretation of the image's symbolism and meaning.\n"
            "- Connections between the image and the related text.\n\n"
            f"User-provided keywords: {data_dict['question']}\n\n"
            "Text and / or tables:\n"
            f"{formatted_texts}"
        ),
    }
    messages.append(text_message)


    return [HumanMessage(content=messages)]

利用LCEL 构造RAG chain

from google.colab import userdata




openai_api_key = userdata.get('OPENAI_API_KEY')


model = ChatOpenAI(temperature=0,
                   openai_api_key=openai_api_key,
                   model="gpt-4-vision-preview",
                   max_tokens=1024)


# RAG pipeline
chain = (
    {
        "context": retriever | RunnableLambda(split_image_text_types),
        "question": RunnablePassthrough(),
    }
    | RunnableParallel({"response":prompt_func| model| StrOutputParser(),
                      "context": itemgetter("context"),})
)

测试验证:

q1:

response = chain.invoke("hunting on the lagoon")
#
print(response['response'])
print(response['context'])


############# RESPONSE ###############
The image depicts a serene scene of a lagoon with several groups of people engaged in bird hunting. The visual elements include calm waters, boats with hunters wearing red and white clothing, and birds both in flight and used as decoys. The hunters appear to be using long poles, possibly to navigate through the shallow waters or to assist in the hunting process. In the background, there are simple straw huts, suggesting temporary shelters for the hunters. The sky is painted with soft clouds, and the overall color palette is muted, with the reds of the hunters' clothing standing out against the blues and greens of the landscape.


The historical and cultural context of this image is rooted in the Italian Renaissance, specifically in Venice during the late 15th to early 16th century. Vittore Carpaccio, the artist, was known for his genre paintings, which depicted scenes from everyday life with great detail and realism. This painting, "Hunting on the Lagoon," is a testament to Carpaccio'
s keen observation of his environment and the activities of his contemporaries. The inclusion of diverse figures, such as some black individuals, reflects the cosmopolitan nature of Venetian society at the time.


Interpreting the symbolism and meaning of the image, one might consider the lagoon as a symbol of Venice itself—a city intertwined with water, where the boundary between land and sea is often blurred. The act of hunting could represent the human endeavor to harness and interact with nature, a common theme during the Renaissance as people sought to understand and depict the natural world with increasing accuracy. The presence of decoys suggests themes of illusion and reality, which were also explored in Renaissance art.


The connection between the image and the related text is clear. The text provides valuable insights into the painting's background, such as its use as a window cover, which adds a layer of functionality and interactivity to the artwork. The trompe l'oeil on the back with the illusionistic cornice and the real hinge further emphasizes the artist's interest in creating a sense of depth and reality. The mention of the lily blossom at the bottom indicates that the painting may have been altered from its original form, which could have included more symbolic elements or been part of a larger composition.


The text also notes that Carpaccio was famous as a landscape painter, which aligns with the detailed and atmospheric depiction of the lagoon setting. The discovery of the painting only a few years ago suggests that there is still much to learn about Carpaccio'
s work and the nuances of this particular piece. The lack of complete understanding of the subject matter invites further research and interpretation, allowing viewers to ponder the daily life and environment of Renaissance Venice.




{'images': ['/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD6APoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1eOe6JwZpD6HcaJLuZDtM8h+jVKOQBg5qncIFlZgwyeormTaESfa52GFlk/76NRvdTIrP58hA/wBs01G+YECke38xWw2M9jRJXBOxVOp3D7h5rjPH3jxVaWe8ONk8+P8AfJqUWMwbAQ1ftLMqpLAc/pQr9BPzM2KW/Y/enP8AwI1JJdXS4VnlHHcmtcoyDAIP1pY4yW5OfqKbTYJ2MmCS9kcANMR67jirgW6/56MR/vmtMR/Llv0qMxqFJ7VPKVdlRbe4YgtOV9txNPEL5wJ3P40r4J4YkCpY1WOESMevGMUWSFdsjC/NgSEnvzSFyWKpJnHvTCFjkdySqkcbjVLzBlijflU81irFws+eS2PbNILmEHa0vOemarQXTBGcsxUdRisndukYhSFyetV7RdCXE6TK8HccH3p4AYZB/WucBIAAc+3PStK0uBFGqOxyefpVe0RPKzSXKtk5x2qTIPBH51TW7TOOvuDVuM5UMDkdqaaYNNClD2zj2pQT3HHvUiuvfrRIRj5QKNw2IzIApbPAqvJcblAUmpCd4ZcjJHUGqE2y3xvkAB6Y60mmFx88jC2ySQd1NjlwoNPQxXMZTd17kVE1pIn3WVl+uKlpphdNBJMSeTUcLhZc80iozNtGKtLZADPJbFRa49iRXB6U5cEdajjgcDlD+NSrEc8gj6iqQhwweBW9Gf3Sf7orEiQLkd6248eWv0FawHAwFbOTz71DJbbiz7iB3q8wQLgHiq5kBbG7ArNO5UtCvFGcZAOPXFWNgUDkk+lO3Z4z+dB6jJ59qNUGjK1xKFXarAHvzVUXEoOA2asS2OXJD4zyRUK2mQfm9qave4n2Jop2Y9s1ejDEZ6D1qpFbIg4GWPfHSrynCbQOlVcLEy/d4HSo7gZxtqZJVbEfAwtRuN4Y5AFQ31KtpYrQwrISZBgL0FLJdRKPKXkg1CJlWT5+VXpz1qo/7yUsowD0FZykylHQk1FkmZXB+YjGKzmZoJCxUZx0NMvrgxSCIKdy9SaiVml5Zhk1LV9QvbQZ50iufLkZQeuKsBo0QZZd2OahWHc3FSNEqJuccelTGNhtjkCOwP8AB6jmp/MRmwF244BNZ4uZAcIqge9XYW85c/LnoRVezaQudNlpLaUOuBuU8lh0rRTcq8j5cVnW8s0cgLtlemKtRH96SzMwbkc9K0jIiSZYXcx+UD8TU+0lMcU4BCOAfwp+BnlsZ7GrbJUSlIvkgY5PtVO4sZbh1dPn4x05Fa7xq5we1CRhThTQHKZcFqYATJwewq4lukqclsH3q00KPyy596eiKgAUYFDbDlRQTSo1bId6lFkoP35PpmrpVj06Uu0496S0G4lQW4A+8+PrThGB0qyQepph4HFNisQbK1EACKOOlUMDNX1xsXjtVU9ykYR5BGDUQUZJPGan2kdz0pmxhznr2qEwkriKORjJHuakZlXk4x6UgRgMflxSmIE8jn1xRe4tUKQjn0NQkqCQi59zUpjBHqB61L9m+VSMcjsKadh2bG2ykoXYdOBxTjywZuBSeTKBtWTaMZPFRNG/QTvx14FDeo0mVbpnM2EPFLb3EgGxhuHck0XFsx3KZZGBxzmqsNjEZgC0vr941LSHqJc3USSlQB9etNhv40cYBOevSq13BGk7AblXsCeaghto3k46jnk1KimJyaHTwlpWdjuLc8mpIoljh34G4noTT1MattOG/GpriFDGsgZVUDOM0prTQI76lRY8EneFB70ySTMBjDc564qJwSSVyfqahcukm18H8KUQkxpU9c1YtODkkhqdGEcDIwan8gIOuD6+la82hmoO5Yjnxw2fbFT/ANoSqwCBAB2xWUxZWOT361uW7BIU4XJGfugVndGvKy5HdkRqWXBIzVRt7zl8nBPHNTyuHj3sPm7AU2LJX5gKXNcfKTRmVyuHzg/nTrm7FuwDIct0xSxc8imX1vLKiGPB9apyuLlHm+Vog0eD6jPSpbS488NvXke9ZEUbWz5dQQfpWpazB2CeWFHbFMSLwJJFBwOtHlj1prvGjKrOAzdATyaOZpDsKTxULsI8BpAMngE9aY88vnNEkIPy5DFup9MdRSi381UedF3jnHXb+NTzNvQfKh4+YjFX1HyjntVIIFq4p+UfSt6W5NjIVc9acFXOMc0pyqggUihj781gpGjiOwOhPNKq7jyKXHHpSqpGO5p3Cw7YAenFDtgZ7CgZ702QFxjODRcdip9pdpSQAUz+dKrF2IAxmpfIXdgDmlEe0+4qbhYY8XyFd5B+lVfs7GTJlcAenU1pEowx3phVRzkU73FymJPYq0jBVdvcmqi26q4zGcfjXTqFAFVblHXmJQQeuBzSuHKYccOX+WMk9qml3mIxtCOR2PNX0hcnkYH0qKW2cMeOB3qG2NRRlJEVOCpJoktfOOdoBAxVpoSGznGKcIHwShJY+gqlLSxLiZgVo/oKftnlUbMn2q4bG5YjKN9RVyDT9o3FWBHPWndIlRZlR6ddMwMq+UmfvN/hVyeSVJwC+6MDAK1oTEyKo2EYqSK03wAMmRnNZylroaKJXR1aPc7AD3NPj+zOvEp5pbsLMnkrGUKnqO9LaWRh+aQ5HYUcyHysdFHIchXIX1p6T+WpQndn3qSR3jUsF+UdgM1VSVrqDdHGYs5wWXBB+lL2gOAsgtwSzuB9W4pyTpCytErSknGF4xT1g/cqkxWU9ye5qYMiD7qgD2rTmuRyk5cOVPmkY6gd6bLOFZQiCRicE5+6KhVo7yBlTOw8Ejj/AOvViCIQxrGo4UYyTk0OSGkxYoYo5XlVR5kn3m7mpDnNHOeDilwe2KE0OwbTnnmrK/dHHaq3Pc1YUnaPpXRSe5D0M0hhk54pqqcnBwc+lObBOAeaauATknrXEpWNrAZUTPmsqN7nr9KlVgQCOlUbu0W5JfzGVwQyHP3cVcEi4AG3PfHalGbu7jcVYmwCKjMefakVx0JAx3pHnQYO5frnFVzoVh4Tk+lLsBOSKo3upw2EO+Vx04VeSa5/T/FtxNdSPcQYtCSF2D5l+vrSdRFKDep1xiGc4zSqoK9KrRalayoHSdCp6HNVrzV4oUZY5FMuMgE8fjU+1itQUJM0VYbypXkc4p4bjAUV5n/bM8esPexTt5mSvJyrDvkehrrLfxTZy2TzH5ZkXLQk859vUU1U0G6bRu4GelNdN3AUYriT4q1ZLhWxEYwclNo+Yeme1dZZataX1sJ45AOzITyp9DRzp6g4NFW4tSkowCQav28QVBkY/CpDJG2OVOPfpS+bGR8rj86nmXcmxIMD0NL61Xa6iRdzyIq56k4pj6jZoQGuoAfeQVSncLFnYCOgwaUIACMcVnf27pu7H2qM844zimzeItPhXPnBvQLQncT0LUdkTK7TSFwTlR0x7VZkCKm5yAo7ntXNXPiyIqRblU7bmIJ/KseXV1nLeZcmTnkFs4p8tkQ6h1s2s6fbgBpd577BuxSprGmydJ1H+8CK4l5EP/LVV/GkWaJsgygn0zVWRn7SXY9Bjkt5k3xujr6g8UxihkH7yMR4wV7k/WuHSVFHyyAfjSGaMZYz8jqQelJxv1H7V9j0NERBhVA+lLxXBjXZoU2m9OAM8kdPrVmPxVLGqs00brjvjJpWKU/I7PgUuRjriuUfxpaoo3IN55xvGKoT+MYpvlS4WHuQvWhNlNo7rg96nGMCvOv+EpAXJ1Aqo/MfpXfWcnm2UEg+YPGrbvXI611UL3ZnJ36HhknjbVobh2S446YIyMCkfx5rDgDzo1A9E61zcxzIw689agwp6HgUvYU+xtzyOjHjDVsuVvWG7qMDFRf8JTqxzi/lGVweawQqBsnJz2zVlJbZEO6Ek467qr2NP+UpTl3NKXxNqrlC+oXB2nI+foa0dMuDc7HvdUlZZD8lurtlj7kD+VXdP8OwXSgpYxSqUDH5z/jVPUdLktNesxBavHCjIQApwvzc1zudKXuxVvuNLSjq2W7jVvOkCxGUwp8oTacZHrnrQL+F0Xa00QU/wRnmi30+7kaXy4chpGYc9iTirMOgXxiYeWvVm5b1rB+zWlzZXsW9Jv7W4XzYftMw5G5YjtyPXP8AOpNQnm8mQuwjLKVizgbmx0rnTbapounR28byJK0xLmE5BU9jVy5lZ7yO0eRmSaDCFjna+ciodGPPzReglN8tnuZp1KKGKCTD4ddrjHIYGpF1e3klUKkwBIxkAY/HNVUije7UTDgkvt9G71fFpHIcJbMeP4UJrqaguhCcmCatNeBkjt4/k+87cH26UyWW9jtpmUpnbnam7d+GKdb6bfwO5gspC0jtkSKQNoxt/matppmqy/LMkcaMeduQ2PY54rOXJF9LFRbasYEd94g2EK9/jt8rUK/iJiGKal6Z2P0rcvrA2pVYDLIpX5mecjac/Wq8V3cwg4vVj/2UkZjWqnFq8Yojlltcr3MbpbSAy3VzMBxvYgA+y9fzrBku7lcB2kB9CSMV3WhRzXniK2eSKXaZgTMy4B45/GugTT5L7U7m2ubRPKTOPMjyAP4Tnvmh1eTeNyWr7Ox5It5OQ2J5B/wI0z7ZM3CyOSB3Y16Lrnh7SbRW82zhQ43boyRXGSyaYHIgtJMDg5Y1rTrRntFkOEluzOW6lxnec/Wj7RJjbvb86kdDM/7q2YDPAUE1Kmm3zqStlPtHUmMgVt7vUz17lYT3GMCQgH3o8+UH/WsPoam/s6/JwbWQD3XHWpxoOqkFjYyhfVlxReC3aJfMVo7m4H/LZ8H/AGqVriY5zI+D6tWxb+EdSlVXZoYlIyMtuz+VXf8AhCbgpj7Wmf8AcrF4iinZsrkm1ocxvc/xE/jSeY/I3H8635PB2pRn91LDIPqRTB4Q1c9fJGevz1Sr0X9pEuE+xjBmAByc0jSn1Oa6W28FXJwJ51Hsoya0m8FqsWYonlcDjeetZvFUU9Hcfspvc4lZXycE19F6K2dC085/5do//QRXhN3ompxyvH9iYAcfIBivddG3Joeno6kMttGCD2O0VvGUZaoyaaep4mPD2l2/mSXmpiTyvmaKHAY84wM0DT9Km3sILku2Qu2M4Poa1ZNJ1CxuWghXTRkZXdgPx3+8avW8OuRQLGt5pCKgxghmP864JVGt5fidqiuiMBbPTrRQZLBnbP8Ay0jzn2rWsGsUQF9FEbYJeQxgKgHU9+lTzaXqF5NBLc6rp26I5ASE46g+tTXWjXl2qLPr0DIucqlsADn6Dms3KEvil+LLs1tElsvENwZpIo9OfZIwWHCqgUdMt6+tY0Oo3txeI13E8zL/ABZAyM+9a39gF02TeIbkrt2kKgUEVB/wi2nl0Vr24mQYzvc8gHP880lKiuoWnfYijll+0/urElyMFRNuLDJ61pR3upxkBdOHpzITWhp6WmnxGOKRUQHhViA/UCrRv7fYy+a2TkDrWcnBle+uhhyx39w+/wDs2FXPVi5H9aFstTB4jgTIPHWrRuHWCE5+ZXwc/wB3NXJ7mLckinG1CDx0pNpBefYyxpuokBvMgQnqUjBqT+zb8gBr91HQ7QBVHVvEDWd9Akc8SxBh5wI3EL6e3rWrHeNNEHhbcp5BxwactEpOw+WpbYpjw6biVVe8uXfv+9xVtPBkHJkDkHnmY/0qe1uUimW4JLE9Rj1FX/7bhLkNG3FONVdyHCp2M3/hF7GHbttFck/3S38zV+HRIowAlvHH+Q/lTj4itVkVfJfHOelSP4hgCkpDJkeuBVe0h1ZPs6nYjW0FvdgkDKsCDWttAmkOeoGOPrWJcatBJJuEMobjPIrQsNQS+up49hTy40PPuT/hRGUW7JilTmldokntoZeZEQk8cjNZJ8OIXJUIM+xqxq14qyvb7nR4wkqOmDg5PUHrSnWoQhzau3HIBrOUoJ+8y4wqWvFDE0Bk6SgDrwDUFx4QiupPMa7uI2P/ADxcqD+HercniGNfvQSZPbcKUa8Gj3C2b8//AK1L2lKOqYezrPdGZL4LYRoF1e8wo24YI3HTHTpQPDN7GiqmuPhRgZt0NXD4jyBm0+Y/7VOGtMzH/R8cZzniqliIf0gVCp2DS9BNkuLm6+1Lj5QUC4/AVrLa24yBEuAPSsk63KIywSPgfxNXI6p4j1rULi4tYGaGCM4aSFTyMd2/wp03Gq9BSpzitTqtT1zQbBD9oAeXnEKD5vx9PxrnIPFJuNVjEOlolsw2Z+ZyvuccVQ8PeD7rUmS5vt0cLfNt/ib/AAr0Sy0e0sYkWGIKF7Dj/wDWa0nGCTildkp21ZkLf3GCRDDj/dIP86sf2pcxInyI/TqDmtc20ZbkHP1qhrkc8Oi3LWJ23IUbGPbJH61ywpyv8RpKcX9k57U9YtbaRvNjG8gfIrc5J9K9AsmWSxt3RvkaJSueuMV5XaaCnzzalKXnfkdSAfUnua9UslVbC3XapxEoyPpXoYRQTai7nPXvpdWPJLPw4Fuorj7VK7sQ2VXjBO3qevWuih0dZVkXdJ8jlCTjk/5NaxtkhnsbaNVYKrFi3UKCCP8Ax7FWndLQKShIlmC8di3f6cVzyjzv3jb2jj8JkJoaDjL59cirKaOgGMv/AN9VqMwCFmwoAycelRWDPJZRSSPudxv+gJyB+WKPYxJ9tLuZtzYW1lbS3FxJ5UKDLMzcCsDRb5Nf1KcWVtcCzi4aWT5cH0x3Pf2FdpdRLcQNG2OejYB2n1Ge/vWPoMEdrqGrWcYCwRSxmNOygrz+eKapwSatqNVJPW5KNKjIGN3HqaT+x1ZuY2yOhzW0EyOAKcwxyCKI0I7sl15dDFGioR8ynntuqC4sreM+SFeSdlysatyff6e9a080n+rjXaT1dhwPp6n9K57xVfTaLpkUlrDveSTD3LnPlHsWPvyPSqVGLdkHtZ9zkvEOkxWz3RZIvPkVZFk2sCxBAI5+o459vSu7ttEQQIrLtO0ZAY4HHavN9Z8VDV2iLyQb4lZV255JwPu9e3H1ru9AudZXS4ri8jUFh/qgCcD1K9QT7dPSta1O8VzF88krI1BoMG0LtGB2yaVfD9oDzGp+pNXLS6+1RllQgjvnIP0P+TVoDA5HNYqmkQ6su5kf2Bbbvlgj+uKeNCt9/McefpWuh5IwfagsN3I6Vfs0R7WXcoDR4QOET8qkh063ikZvJj3EAZ2irZcZxmjI3dc8d6XKlsPnb3Mu506Ka4dlijDeWAMrxnJ5rG0ZJTKtpqRt5JZlaS3lT5fMUHBBXHBH6iugvllO14ZSgHEm1ctt9vesTWrCFLcazCXa5tnUxsCSX5Bx+XGB60kk20yk9DYGlQY+4n4inDToFXAjT8qtI+9Q2CAwBweopScj1qHEFM5zWr3TdFEZuYxvkztUKTk9vzOBVTwrLdanBc3F39kMO/aiImDGw6qfXqOe9ReMZri40+/WC3E0SxKhk8zAjO4MSMcnoKzvhneXDx6jZTxqyI6zCdW6lh0x7ba09mvZOS3Dm1Ok126g0a1jmMKHcwG7YCOOSMfTNaVpa2t1befEyvDMu5CB8pBHFcr44he/tylu5Y2yGVwGG1R33d+nQVJ8PdWeaxl0qbcXtcOj9QUY9PwNCpp0+YctFdHXsJLWBBbwiTGAy7sHHqPU1xWoa1PpGuf2lFPNLZu4SS3nyNoOCcDPGO1d3nB61laxplhqarDcgCZzmNguWJHb3H1pLR6ipzSvfqa8ckcyB0dXU9CpyKbcwrPbSRMuVYYxXCeGdZmsdXuLe53LYTudrk/LHJ/QHp6ZFd2JA2CCDn3ocUFSEqcuVnP3GlQsNu1xyDwxrr7aMJawqDkKijJ+lZzMDwQOfUVqR4ESY6bRWuDjaTM6srpHLXbPFPd3Qz8lrtTHUHJP+FGoF/s1l1Z1uIt2Pryand15z/EMH3pBISv4+lRYLj77cbG4CAljGwGPUinxgxQqgHCqAPwFNdsoR6ikMnyD5abTFclLFgfpVCzt5Itbv5gAqSxxYORyQCKsCXAHBqHzgt2MfdKYP17f1pJaj5tDQDHnJFJwcZJquZPb9aasvUGtLGbkWGww+Y57YJqG5toruAwvnB/GgPk9h+NOyMfwj8aVmHNY5608I6fbak8yW0MbDkMicn6eldKkSRKFVRgVXk/1off/AA4p3mY68/ShtX1G22WN23oBzTg5xVcyc5JIpFmGCc0ubURY3jPXrRIiyqyNkqwwcH/Cq3mdqcJiO+Kb1EpWOe1TRPEltmXQNbmI/wCfa8w4+gYjP5/nXNSeKPHumORd6THMBxkQ8fmprvLiIXAKyXExX+6rbR+lUm0WyJJMch+rU1NdYplrTdnDXHxI8RMpUaOIX9VjY/oaytR8c3t5qEd0dLEbxBMYZsBlcNux0ycY+hr046JZ9cOAf9o0r6FZEHaGI6/eNXGUV9j8Rymn1/A4mL4s3JH7zRh+Ep/wqVfisxbadGchuAPN6/pXX/2HZNjKZB9Wph0OwjBb7MH+vb3obpr7P4kXv1OEj+IMNjBe2A0+SSORnAZZANuRjjjmq2l+O7fSpraSLT5FxAsFyisAsm37rD0P8676PRtOXaiWvAGB0qYaTZn/AJd0GT6D/Cjnp2ty/iNyfc4mXx7ZJetqI0ybyruNo5YNyneRj5icfpUOiePLPSLorDZTC3dAHAAyzDo45446j8q72XQdNnfMtqC23Gc0yPQdN+6sAGCfT/Cjmp2+H8RczfU5/wD4Wvb540q4P/bUf4VkyfEFbjxFFqU2m3Lx26FbeBZcBWPVjxyev6V3ieH9PT/lmeP9qlk0axjwVgBHfnmlzQS+H8ReVzg38bodT+2xaI+xgQ8LvkHIwe30PTrUlt4+1C1lUWOjskBJ/wBHZ2df+A8ZX6dK7b+x7TdxEB64Y1INJtA2RGSvf5jS54fyfiW5t6ORh2OveLNYIxa2GnQt0kmyzH6AnJ/KvS7VZBaQh5N7hF3NjG4461ya6bZAZESZPc111uAttEBnAQAflWmHleT0SIlsczJneev4URo/ZifrQ2NwOeacrZwCwA9TXMkkW2PwO+eKYWXYWPSsjxB4hh0CEGaJpJX5RFOMj1zUOm+JLfVLYTJFKMMFaIgBvXHpRJ8q5nsXCnKWiRyWv+PdRtdUmt7OKOOJDtVnXcT71v8AhrXpdb0ZruVVWeF9rbeAcc/yqzf3fhjXFe3mtcOG2qwhG4NjpkdOfwrGs9O1nStPnMJtkjcHMWegPp2zzWrcXCyVmXKFjusj1/Km+bhwMCqF5q0Gl2cUl23zsoGyPkk45qDRNcttdaZLWKZWhxuEgHeoTdiHRlyqbWjNKS8hgXdPMka+5qYSRva/aVdWhxkMrAgivMviVdX9veRRhXW1VBtcf3u9Y/h3xCloogmuJwryKXZZCuR3GOn49a1VKThzjVOL0PYmCOUdTnPQinhwu0HG5jgCqkDxeRH5bDZj5cHII+tMa42X6ID0iZuvuBWG5k2aDZCg4pm844A/KoPtAI5c4pwmBPXj0qiLoZBfrPdSwCKRJIwCQ67cg9CPyqwHYthlxx65qEFfPaTYoYgLkDkgZ/xp5mUdh0poTt0HBmY8EcU7IHXH4VXE0eSdvWgyIeStVYSZMHK5xk59akEjLHuxyeCOtUZL2BJoopMgyZ2HHBI7Z9amMqgjnI9KLA2iYSHP3M/jS72PBX8M1ALhc+gpPtALbdwANJuw1qK2Q2PunqMVmzPK1/sV2wGGDnitJCpJOc/WoDa/vvMLZy3pgAVEldaFwlZu5Y8xQdwBLY5oiJ3EkUjIuQBt9zS79mBxxV+pn6FjdkcHp2prucdKjSXkjHNLl+xHvntQxEUmXOFbGeGUHkCrAkUcAcYqMYUkDGKOwyQTUWG5dCUSL3H510cBP2eP/dH8q5gvgcjNdNb820R/2B/KtsP8TK6HFTEq5IfIp8TvIFQcknFV52y7c96r6jP5Gi3UoO1gmxT0wW4H9a5E9Tppw9pNQW70OA1S01jW/Er6dFcI8DXBMbmQBSpPJBJz07D0rp1n0LRNEaFnmnv/ADG5RdrAnj5SeMYrlJnM0ThQVmjOQQfToRRaX9wb3T31K0+0QNOruyHLFSemM4/rXUl7SNmtuh6WLouhJNSbT/Q1luJLb7BBb2nl5fcZc5aTJ4znj24rr1USLDABxI4G3PXByf6Vg+NptviKJYxgxphQPUNkcfhXSaPGJ9R3hQ5QeYULYwvbP41lPWzPOqO7KGu+HdRy07rbnnAcuSOfbFZmnXml6FpjeXd3bak0hBCKqrk8dSCCB/kVveLdZknEGmxRtHcTzIqK3fJIzkds4rmfFFrZ6HFHZKommK7jPuIJ+q5x9KuEUtEaupKUUn0MjxhNdT3stteXC3EUfTywAob3x1o8NeHLPU9BM93GTLK52uDgqBwMe1cvqtw8kW52Ykt611/h7VTB4atIkZnlVG/cwxGSQgE846D8a3qKUaa5e5jU0djU0+2n8NwgC8E1mSA4kG1kOOo6jHatTTrk3dxLe8hGHlRKf7oJy34n9AKjt7WOZIZ590shAIEvIXI9Ogq2oCEkDArilO7u9wm+Zbalvf3zmpFcdRVRXHBzkU4SAA4PWmpHO0WvPbGAtMeToMc1XMuB1pplzyGp3EWAzdqdlic4FVlkI60vm5OARSbBIZesWNuhAy0wI9sAn+lSCRuPTNVZmJv7RTnkSH8cD/69WSMMQehH60N6DtYSV5liLxKJHUghGOAwzyM9qxfFniaUxxxx2E1r3DAjAI9CK1Zpkt43d3AVea57Tp/7e8S20EztHaksFQHkjGcj0J9acHd3toddCHNF36GroHiSLV4SrgR3CD5o89R6it1JVzk9DVR9A0yC/R7TT4o0jyWmIIx+J71Qk1mC0bbOHU5wAOeOx/KplJX90lYedR2grmxJLgjGfwqvNfwQECWVEz0DHrUFrfQX0XmwOHUHB4wQfQ1zXiSVYdQQNIoMqb1B744q4Xk7GMKSc+WWh18d3G43I4Ydypp/20j7u7FeZaXfT2mrRlCSJHCMueDk16EC3496uacHYyqU+V6FoXG45yc0faCc8moVf5DgfjQJew7e1Z85nYsC4ZhyT7V2toxNnAcnmNf5VwnmEjFd1Z5+w2//AFzXv7V0Yd6stHCSuBM31Nc94l1NXtE06N2Af55cev8AD+QGfxqfUtTFqZzs3OnJUjO36jufQVzOqzQ3mlT6vbyyKVzGA2CWYbQSfz/CueEG2ehg506NTnqq5h/2nLDfxB4lk2/K3OA+fXHSmy3M9mcpKkihxJiP+E9cex9qXSorWeC5+27o5lljAGDwuCWJHfoB+NXLV7CXU7e3PCMCdkeD1U5Bru0i7WNZTlWTlKXoRaPfTLqb3E9zJkw5Uu2ep4HJ4r0jw1qFtpulXt3cNbxXdzIIx+8BDY9DnB5JrzmGzXat5fKsMBTdDbbsNIg5yx7L79T2qtqN4upGC2s4mkYHBUKB34CgfdXB6e3NTKHPLQ53NKPKkdrr3ie207xks1yrOluWjBUZIITGQPXJrA8ReI4JtfhvFXzbdmDFOM7NuACOx9qyb2yMM1rbajuSeSQO+35ikeOnuetTTGxjVY5UWK2TMio4w0nYZx35JpqnBWa1JV5aXsYWqXJv7p5IohBB8oEaNkDt+ddjY6jCGWGCC2lckJKrq4ZIwByWUgEfmc1ykiC8lYWcDRQ8csc9OmK3LLTjFGpyyg43c8sfU1dSyiugXSut/P8AyO6GpRwny9jBR8u7OSPTP+NINR3njIGKwISxG987SAFB9u/51YUkliD7V5/syW4mt9u4wOlOF8MDnj61jFmB4PPfFRNMYzxnPqBVchm7PY32vUPenC+TgZAP1rj9Q1K8EarZx/OTy0mMAfSn2BmQie4LTTnuzDav0FN0tLgk+p2C3IZRSicHpWB9plwAI+M9dwpVuZwc4Az71HIxOKua99NIXtZ4wzeRMCyqM5Ujaf55/CrUl4Gt5jE4LqdowM4bsMViLeSE8YyDxVa0upFup0umzMx3LIR95fT6ilytmkORay1LWr2mr3dvFDJLaKWUGVI24Q+hPc+1RWmhRWyiYXMhvEIMcmcBWHcCg3hkYhQeDVeDWPN1q4sEjZ5EUspGMZxnknoPc1oue1loV7Vt2WhU8TavrLWzxy3zuwYfIpGP0684rZTSru/t4DqFvNbX5RUwuG8w4zjH97qcdqwdXsf9MMX2pZCEDkxj7rnqPfBBrVPiS+g0mzv7q5PnWpcwkn5mBwCTnr6euM1U4Xirbno87pzdSi7K339yNNN1nQ7pntrK7kVm5URkmQ/lW4PD1z4pgUapps2nGLlJHkXIJ64A5/Oubk+JurXtk0rwoDDINroSMgjkMPp6U/TvG+p6lfJENgLuNm1s984q3TqL3rarqeZOUakrlm88LyeHNS8y1uxOuMoZVzj/AOvWtpOpvewSCUBZom2sF6HPQ1s61ZSXemW03IcQhj/n8q5GG8NjI0iQGRZ9oKqQCG7Hn61m37Ra7kzjpodMJD2NHm/L2B7VlfaSC3NNF05BHTB9ayszPlNgTe9egWX/AB4W/wD1yX+Qry5Z8Ic88V6fpxzplocdYU/9BFb4f4mK1kfNN9NcXd3JhnJ3ud7NtHHWrb3ttb+EktFKzGW5yw6HAwW56gHgfhVDVZrq+vHMzllRiqIowqjPQAcCnyWsa6dBtZC6mRnXzFBAJGM5Oc8V1OKdrmtyLUrh7u6EkaNDHJFHlAc5KjH9DVrwyiDXoAWweQeM5z8uPxzUNtf6bLbxw3QuIGRSvmw4fPOeVP17GpdMubK21+0WB2nBnjAkWMxfxjqCTTfwuNhrdFJ7y8ubxnUvLcSZThd2eMd++PyrS0fUrDRrFjNva5mHMkD4kQeg6gfoaq38l7LcNAvl20UTOi+WNpbnBJPUk4plppG/GFLnrk9KJWcfe2Grp3RVe4lub1prYSKufleUglR/jVq201pJBJKzSuerv0rctdOhQ/OOQOhGP0qdo1Kuq5JA4/Cs3W6RFoVo7eOJcY59elaCBXhXdxnqKgnb930HI9KLVx5Cg9c1k9VcTbaLyFf4hyPenM2ASABn2qLeCTgjNPwWXAIOKkzsxr7sgBuCe1KYw3U80zcFIOeB7U8yKRuoBkJRQQdoJ78UvpgYHpTWcLnABHqaXcM+maY2yUONuM0bwehNRb+TwKQnJz6UWJLCcnqQT0Oajnt1kXDFsqcgjqp9RQjqcMRjHFOeQgFRx3OKWqGnchUSySJHnMjEANjAz71IunxFbwJbNKm4LeyqxIZ+yZHYd/U/SrMKCyhWQkm6m/1XP+rXu317D8TWHd6ZeSatJaafevbwuvmPtkZUj4+bd7Y5/SiPvaJ2Oik4wknJX8jSs9Ps9MuvtEwit7IbTI7tlUJ+7x1Prj6019F0/X9btbO31iO4IlKTxqp2IueGB/iyOw9aztWjg1GFLW3u0S2i+4CCzMe7Njuf0HFVYdKWCWWQXEqGQAKViYEEeh4q4xt7zevodVROb5Uko+qNfxf4YXQtTEFmqi3uIgcM3Vhxx7+1cfPbPp7Q3VvIylSGDjqp7GvYNejt/EugaYd7i+ZTJaBl5kZRhkJ7Nxx68V5fBC91ePZSq0aoWLbxyVznH55rSlU93XpucvsnUkoJavY9I0vxhqWv+G4l0zTPPvlKwXJf5YkJ7gn1/SuS17Rb/Tb63i1GYNKHBCQ52L8pPB7n3rqvDGtaL4f0dYJ5xDL9sEkiKjMdmODwOegrP8a63pmpzWt/ZXPnrGNsgVSCpPAyDWcLqXurQVSm6cnCb1RUsrkzwbXOZI+Cf7w7GriH1rkbHULiS+2R7U+U7Vb+L2Jrai1NeUuFaJ8456H8aJ02mc++xsbwa9Y0xs6TZnn/AFCf+givHYZVki3A8etewaWR/ZFl/wBcE/8AQRRR0bBo8Dkt0E8ionVmHr3qncWUajD4YdwecVaupiLiQIwxvPTjvVdhv6njv701e9zoZmmwgkf93GwH161esbJIJ45dnMbBsDqcHNL548ngBT7U9ZDu3ZzkVo5SaJ6k90YZvNmVNryMXwTnAJzU1vE7iMW5PmOwRVxwT6VSj3zOqKAWJwBniuqg+1Jp8MQuLcGE5BhIYrz7VnK6RV7sjvtHa1to3mnXzTncRwq4x379R25rKVyszqDvHZh3pb2/ujb+XJP5iSSHJ4PTkU3TdSjsluHMSyPhdue3J4/Gko6E2Y6RHjtvOkXETnCZOCx9h3HvUKsEHGG3HgCoLy6mup/PuGLSdFA4VB6AVCrsq5UkH61fKC2LEsk8d6IyXCBA2V7nP+eKtLMQAfmz34qg0z8Hccj3pxkd+rj8TS5RNFtrolgeaQ3ORg4NZxJ3fez+NPCFsc5quUlxLpucjAwKRrjgdM96pLHIuSelBL44zRyoOVFk3Um7oKU3Dc5NVCHyMnikUY4Zj+NPlQuVF0XIADAjj1q/abRE1/dZ+zIQFUHBlbso/qewrOsIoJZsSyFFBwSBkj3qfVL1ZnWGAbbeFfLhQendvqTWco3dkVFJak/2qe7vlzl52I+Ve56AD09hRqM+IHtIJsBcG4mHO9h0A9VU/nz6CoZWOj24BYrqFwo8xu8EZ/8AZm/QfWs92JiWKIglQR7EZ4/nRGCbutht23Om8O+J3t2W1ugNiDBKgEr6Eeq+9dtcR2mp2YjnUTRMMg56e4PavFwjNKJoZDFKgwBnG4+nse9dHY+MI7ZUVY5lIGJVJAUn1wOn4VzYjBtvnpbnTSrq3LM6i70gWtjbwmaeS3hneRWQZdFYD88EdfeqHiXTUvWstbW6jkmjAjlbzBumXop4/iBOCO/FKPF8rBWjsMg9DvHP0NYWq66EuI9QFmbaRCQHjZT8x77TkZ98U6Ea3N7w5ThC0o7rUr3yjG7jcowcVzf2yVGlUN8j8Mh71u2Qm1DS7q5dkZFbervIN+OhXA796p2umRXENxIYdzRE7v3u3dnoAMda7qdoKzJxtb6zP2kVYqwS7BBcL95HGT+hrfkaOZNpwR6HvWKBDBIbY2zRMzbTufPNRm/exlEW07UGDk5B9/anKPNscmyuzZiSS3Ba3kKgfwHkGvedFZ20HTiwG420ZP12ivBLe4S5iDxE89R6V73ouf7C0/8A69o//QRURvfUT8j5+uiGuZiOBvY4z7mow3y8028fbeTY6eY386g83rmnys2FLBGI7GnqcqOe1QD53608Ng4HQVVhE6rnOfxzUs1z5ixwooSKMY2g9T3J9Saq+aFySc0xZhu9KOUCS58wQPsfAAziktEM4BdxlNxwe9RsTNvHUbef5VNp5liuXwdkDfu5M9Nvf+VO2gMuPNGJomxv2qu4ep/ziqxHzn68D2pqThnZcDccnI44qKecGTK5PHXFJR1sGyLLsMccGm7h35qm85JXmgSEsOcVXIK5cVl3ineZjO3iqCSnd71J5xLDNHITctrOx6kDt0o88rxgj8KrCVc8kfhRJIMcE80co7kpuGLnigvuHXn6VUkdgeDjPtUwYBeTzinyk3LCFgcqea19Pe3sFkvLjbJKo/cxsOC3Yn2HpXP7yCME+tSfaj5ZiLEoeSM8VEqd9AUralieR53eSZy0jnLs3JJNREKEGcZ9ahM2zkEAdKVplABPIxVcom7hICGIOMNxzVK5SVG3Dlc8+tPe4MrAIDtz0PaljlZuCMj1q0rE3I7TVbiyyEIeJuWRxkH8KtvcabqaFGZrOQ/3/mTP16j8fzqq0Cl964BHtxVeWIEFimD7UcqeqDmdrFttKvrS8b7OguVRPN3wfMrJnrx/kV0fh7w3c65FczW88Maqw3eYTnke1cpZyXNnOk9pMVdOQQcfhWvpvi6702WVhbxsJeXUMyAn14NRVjUcfc3HTlFPU9EvPCTanFEL6aMSIoVWhhCngcDOelec+ItHudNuAk6/P0DAfeHrWyPiApGDpuT/ANfUhqjqniq31OJUawMDIcq6TMSD261y4eGIpytPb5GtWpSktDEspZrV9yq2O4x+lfSuhvv8P6awHBtYjz/uCvnFNbuGGJGmkc/xCZh+lfRWg/8AIu6ZlcH7JFxnOPkFdUlrqjmj5Hz5fgrqFx/10bj8arZIB961btQbuYkAne3b3NVCq5PA6+lCOhsqR7ud3JpejY9qsoq4bgdfSnIq7fujr6VQrlUODHx1qPy2IJUfd61eCruA2j8qmhVQX4HQdvrRsCdyh8/kOqkqZON3sOtRu5STAxj3q8VGBwOn9TUEqruHyj8qaQNkETMNwJxkYOD2qJnbbt/lVoKOeB+VG1euB+VVYnmK4wANw/WpflJyQRUm0YXgdfSrW1do+UdPSkwuUYxtb5h+dKCN3bH0q2irvIwPyoCLuPyj8qAuQEoBwf0pgbORjp7Vd2Ln7o/Kk2qC2FH5Uh8xTkwxB9OKaM4xkVcKLu+6OnpSxou77o/KmiWyjt6Zb9afgbiDVpkTcflX8qkEaY+4vftRYnmKRVGHHbrSsU28n26VoJGm3Gxfypxij5+RfypBzGOIwGyAACKWJHKNg9K2BFGWGUXr6VZihi3n90n/AHyKbYkc4C4OCKV1YjpnNdF5EWT+6T/vkU3yIc/6pP8AvkUybnNeUEPFHlZXpXTLbwEDMMf/AHyKlS2g/wCeEf8A3wKYXOOMHJxmkMLHFdqtpbE828X/AHwKlSytef8ARof+/YouSzkLWFUbcfmIHHtX0loQP/CPaZ/16Rf+gCvJrWxtPNX/AEWDr/zzFez6eqrptqqqABCgAA6cCsZvUuB//9k='],
 'texts': ["VITTORE  CARPACCIO Venetian, 1455/56-1525/26 Hunting  on the  Lagoon oil on panel, 75.9x63.7cm 6 Carpaccio  is considered to be the first great genre painter of the Italian Renaissance, and it is ob- vious that he was a careful observer of his surroundings. The  subject of this unusual painting is not yet completely understood, but it apparently depicts groups of Venetians, including some blacks, hunting for birds on the Venetian lagoon. Some birds standing upright in the boats must be decoys. In the background are huts built of straw, which the hunters must have used as temporary lodging. The  back of the painting shows an illusionistic cornice with some letters and memoranda—still legible—fastened  to the wall. The presence of a real hinge on the back indicates the painting was used as a door to a cupboard or more probably a window cover. It is therefore possible that one had the illusion of looking into the lagoon when the window was shuttered. The presence of a lily blossom at the bottom implies that the painting has been cut down; originally it may have shown the lily in a vase or it may have been cut from  a still larger painting in which our fragment was only the background. Reperse:  Trompe  l'Oeil  ",
  '3\n\nThis painting was discovered only a few years ago. Unfortunately very little is known about its',
  '18\n\npersonality and artistic interests, but he was most famous as a landscape painter.']}
print(response['context']['images'])
####### RESPONSE ##################
['/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD6APoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1eOe6JwZpD6HcaJLuZDtM8h+jVKOQBg5qncIFlZgwyeormTaESfa52GFlk/76NRvdTIrP58hA/wBs01G+YECke38xWw2M9jRJXBOxVOp3D7h5rjPH3jxVaWe8ONk8+P8AfJqUWMwbAQ1ftLMqpLAc/pQr9BPzM2KW/Y/enP8AwI1JJdXS4VnlHHcmtcoyDAIP1pY4yW5OfqKbTYJ2MmCS9kcANMR67jirgW6/56MR/vmtMR/Llv0qMxqFJ7VPKVdlRbe4YgtOV9txNPEL5wJ3P40r4J4YkCpY1WOESMevGMUWSFdsjC/NgSEnvzSFyWKpJnHvTCFjkdySqkcbjVLzBlijflU81irFws+eS2PbNILmEHa0vOemarQXTBGcsxUdRisndukYhSFyetV7RdCXE6TK8HccH3p4AYZB/WucBIAAc+3PStK0uBFGqOxyefpVe0RPKzSXKtk5x2qTIPBH51TW7TOOvuDVuM5UMDkdqaaYNNClD2zj2pQT3HHvUiuvfrRIRj5QKNw2IzIApbPAqvJcblAUmpCd4ZcjJHUGqE2y3xvkAB6Y60mmFx88jC2ySQd1NjlwoNPQxXMZTd17kVE1pIn3WVl+uKlpphdNBJMSeTUcLhZc80iozNtGKtLZADPJbFRa49iRXB6U5cEdajjgcDlD+NSrEc8gj6iqQhwweBW9Gf3Sf7orEiQLkd6248eWv0FawHAwFbOTz71DJbbiz7iB3q8wQLgHiq5kBbG7ArNO5UtCvFGcZAOPXFWNgUDkk+lO3Z4z+dB6jJ59qNUGjK1xKFXarAHvzVUXEoOA2asS2OXJD4zyRUK2mQfm9qave4n2Jop2Y9s1ejDEZ6D1qpFbIg4GWPfHSrynCbQOlVcLEy/d4HSo7gZxtqZJVbEfAwtRuN4Y5AFQ31KtpYrQwrISZBgL0FLJdRKPKXkg1CJlWT5+VXpz1qo/7yUsowD0FZykylHQk1FkmZXB+YjGKzmZoJCxUZx0NMvrgxSCIKdy9SaiVml5Zhk1LV9QvbQZ50iufLkZQeuKsBo0QZZd2OahWHc3FSNEqJuccelTGNhtjkCOwP8AB6jmp/MRmwF244BNZ4uZAcIqge9XYW85c/LnoRVezaQudNlpLaUOuBuU8lh0rRTcq8j5cVnW8s0cgLtlemKtRH96SzMwbkc9K0jIiSZYXcx+UD8TU+0lMcU4BCOAfwp+BnlsZ7GrbJUSlIvkgY5PtVO4sZbh1dPn4x05Fa7xq5we1CRhThTQHKZcFqYATJwewq4lukqclsH3q00KPyy596eiKgAUYFDbDlRQTSo1bId6lFkoP35PpmrpVj06Uu0496S0G4lQW4A+8+PrThGB0qyQepph4HFNisQbK1EACKOOlUMDNX1xsXjtVU9ykYR5BGDUQUZJPGan2kdz0pmxhznr2qEwkriKORjJHuakZlXk4x6UgRgMflxSmIE8jn1xRe4tUKQjn0NQkqCQi59zUpjBHqB61L9m+VSMcjsKadh2bG2ykoXYdOBxTjywZuBSeTKBtWTaMZPFRNG/QTvx14FDeo0mVbpnM2EPFLb3EgGxhuHck0XFsx3KZZGBxzmqsNjEZgC0vr941LSHqJc3USSlQB9etNhv40cYBOevSq13BGk7AblXsCeaghto3k46jnk1KimJyaHTwlpWdjuLc8mpIoljh34G4noTT1MattOG/GpriFDGsgZVUDOM0prTQI76lRY8EneFB70ySTMBjDc564qJwSSVyfqahcukm18H8KUQkxpU9c1YtODkkhqdGEcDIwan8gIOuD6+la82hmoO5Yjnxw2fbFT/ANoSqwCBAB2xWUxZWOT361uW7BIU4XJGfugVndGvKy5HdkRqWXBIzVRt7zl8nBPHNTyuHj3sPm7AU2LJX5gKXNcfKTRmVyuHzg/nTrm7FuwDIct0xSxc8imX1vLKiGPB9apyuLlHm+Vog0eD6jPSpbS488NvXke9ZEUbWz5dQQfpWpazB2CeWFHbFMSLwJJFBwOtHlj1prvGjKrOAzdATyaOZpDsKTxULsI8BpAMngE9aY88vnNEkIPy5DFup9MdRSi381UedF3jnHXb+NTzNvQfKh4+YjFX1HyjntVIIFq4p+UfSt6W5NjIVc9acFXOMc0pyqggUihj781gpGjiOwOhPNKq7jyKXHHpSqpGO5p3Cw7YAenFDtgZ7CgZ702QFxjODRcdip9pdpSQAUz+dKrF2IAxmpfIXdgDmlEe0+4qbhYY8XyFd5B+lVfs7GTJlcAenU1pEowx3phVRzkU73FymJPYq0jBVdvcmqi26q4zGcfjXTqFAFVblHXmJQQeuBzSuHKYccOX+WMk9qml3mIxtCOR2PNX0hcnkYH0qKW2cMeOB3qG2NRRlJEVOCpJoktfOOdoBAxVpoSGznGKcIHwShJY+gqlLSxLiZgVo/oKftnlUbMn2q4bG5YjKN9RVyDT9o3FWBHPWndIlRZlR6ddMwMq+UmfvN/hVyeSVJwC+6MDAK1oTEyKo2EYqSK03wAMmRnNZylroaKJXR1aPc7AD3NPj+zOvEp5pbsLMnkrGUKnqO9LaWRh+aQ5HYUcyHysdFHIchXIX1p6T+WpQndn3qSR3jUsF+UdgM1VSVrqDdHGYs5wWXBB+lL2gOAsgtwSzuB9W4pyTpCytErSknGF4xT1g/cqkxWU9ye5qYMiD7qgD2rTmuRyk5cOVPmkY6gd6bLOFZQiCRicE5+6KhVo7yBlTOw8Ejj/AOvViCIQxrGo4UYyTk0OSGkxYoYo5XlVR5kn3m7mpDnNHOeDilwe2KE0OwbTnnmrK/dHHaq3Pc1YUnaPpXRSe5D0M0hhk54pqqcnBwc+lObBOAeaauATknrXEpWNrAZUTPmsqN7nr9KlVgQCOlUbu0W5JfzGVwQyHP3cVcEi4AG3PfHalGbu7jcVYmwCKjMefakVx0JAx3pHnQYO5frnFVzoVh4Tk+lLsBOSKo3upw2EO+Vx04VeSa5/T/FtxNdSPcQYtCSF2D5l+vrSdRFKDep1xiGc4zSqoK9KrRalayoHSdCp6HNVrzV4oUZY5FMuMgE8fjU+1itQUJM0VYbypXkc4p4bjAUV5n/bM8esPexTt5mSvJyrDvkehrrLfxTZy2TzH5ZkXLQk859vUU1U0G6bRu4GelNdN3AUYriT4q1ZLhWxEYwclNo+Yeme1dZZataX1sJ45AOzITyp9DRzp6g4NFW4tSkowCQav28QVBkY/CpDJG2OVOPfpS+bGR8rj86nmXcmxIMD0NL61Xa6iRdzyIq56k4pj6jZoQGuoAfeQVSncLFnYCOgwaUIACMcVnf27pu7H2qM844zimzeItPhXPnBvQLQncT0LUdkTK7TSFwTlR0x7VZkCKm5yAo7ntXNXPiyIqRblU7bmIJ/KseXV1nLeZcmTnkFs4p8tkQ6h1s2s6fbgBpd577BuxSprGmydJ1H+8CK4l5EP/LVV/GkWaJsgygn0zVWRn7SXY9Bjkt5k3xujr6g8UxihkH7yMR4wV7k/WuHSVFHyyAfjSGaMZYz8jqQelJxv1H7V9j0NERBhVA+lLxXBjXZoU2m9OAM8kdPrVmPxVLGqs00brjvjJpWKU/I7PgUuRjriuUfxpaoo3IN55xvGKoT+MYpvlS4WHuQvWhNlNo7rg96nGMCvOv+EpAXJ1Aqo/MfpXfWcnm2UEg+YPGrbvXI611UL3ZnJ36HhknjbVobh2S446YIyMCkfx5rDgDzo1A9E61zcxzIw689agwp6HgUvYU+xtzyOjHjDVsuVvWG7qMDFRf8JTqxzi/lGVweawQqBsnJz2zVlJbZEO6Ek467qr2NP+UpTl3NKXxNqrlC+oXB2nI+foa0dMuDc7HvdUlZZD8lurtlj7kD+VXdP8OwXSgpYxSqUDH5z/jVPUdLktNesxBavHCjIQApwvzc1zudKXuxVvuNLSjq2W7jVvOkCxGUwp8oTacZHrnrQL+F0Xa00QU/wRnmi30+7kaXy4chpGYc9iTirMOgXxiYeWvVm5b1rB+zWlzZXsW9Jv7W4XzYftMw5G5YjtyPXP8AOpNQnm8mQuwjLKVizgbmx0rnTbapounR28byJK0xLmE5BU9jVy5lZ7yO0eRmSaDCFjna+ciodGPPzReglN8tnuZp1KKGKCTD4ddrjHIYGpF1e3klUKkwBIxkAY/HNVUije7UTDgkvt9G71fFpHIcJbMeP4UJrqaguhCcmCatNeBkjt4/k+87cH26UyWW9jtpmUpnbnam7d+GKdb6bfwO5gspC0jtkSKQNoxt/matppmqy/LMkcaMeduQ2PY54rOXJF9LFRbasYEd94g2EK9/jt8rUK/iJiGKal6Z2P0rcvrA2pVYDLIpX5mecjac/Wq8V3cwg4vVj/2UkZjWqnFq8Yojlltcr3MbpbSAy3VzMBxvYgA+y9fzrBku7lcB2kB9CSMV3WhRzXniK2eSKXaZgTMy4B45/GugTT5L7U7m2ubRPKTOPMjyAP4Tnvmh1eTeNyWr7Ox5It5OQ2J5B/wI0z7ZM3CyOSB3Y16Lrnh7SbRW82zhQ43boyRXGSyaYHIgtJMDg5Y1rTrRntFkOEluzOW6lxnec/Wj7RJjbvb86kdDM/7q2YDPAUE1Kmm3zqStlPtHUmMgVt7vUz17lYT3GMCQgH3o8+UH/WsPoam/s6/JwbWQD3XHWpxoOqkFjYyhfVlxReC3aJfMVo7m4H/LZ8H/AGqVriY5zI+D6tWxb+EdSlVXZoYlIyMtuz+VXf8AhCbgpj7Wmf8AcrF4iinZsrkm1ocxvc/xE/jSeY/I3H8635PB2pRn91LDIPqRTB4Q1c9fJGevz1Sr0X9pEuE+xjBmAByc0jSn1Oa6W28FXJwJ51Hsoya0m8FqsWYonlcDjeetZvFUU9Hcfspvc4lZXycE19F6K2dC085/5do//QRXhN3ompxyvH9iYAcfIBivddG3Joeno6kMttGCD2O0VvGUZaoyaaep4mPD2l2/mSXmpiTyvmaKHAY84wM0DT9Km3sILku2Qu2M4Poa1ZNJ1CxuWghXTRkZXdgPx3+8avW8OuRQLGt5pCKgxghmP864JVGt5fidqiuiMBbPTrRQZLBnbP8Ay0jzn2rWsGsUQF9FEbYJeQxgKgHU9+lTzaXqF5NBLc6rp26I5ASE46g+tTXWjXl2qLPr0DIucqlsADn6Dms3KEvil+LLs1tElsvENwZpIo9OfZIwWHCqgUdMt6+tY0Oo3txeI13E8zL/ABZAyM+9a39gF02TeIbkrt2kKgUEVB/wi2nl0Vr24mQYzvc8gHP880lKiuoWnfYijll+0/urElyMFRNuLDJ61pR3upxkBdOHpzITWhp6WmnxGOKRUQHhViA/UCrRv7fYy+a2TkDrWcnBle+uhhyx39w+/wDs2FXPVi5H9aFstTB4jgTIPHWrRuHWCE5+ZXwc/wB3NXJ7mLckinG1CDx0pNpBefYyxpuokBvMgQnqUjBqT+zb8gBr91HQ7QBVHVvEDWd9Akc8SxBh5wI3EL6e3rWrHeNNEHhbcp5BxwactEpOw+WpbYpjw6biVVe8uXfv+9xVtPBkHJkDkHnmY/0qe1uUimW4JLE9Rj1FX/7bhLkNG3FONVdyHCp2M3/hF7GHbttFck/3S38zV+HRIowAlvHH+Q/lTj4itVkVfJfHOelSP4hgCkpDJkeuBVe0h1ZPs6nYjW0FvdgkDKsCDWttAmkOeoGOPrWJcatBJJuEMobjPIrQsNQS+up49hTy40PPuT/hRGUW7JilTmldokntoZeZEQk8cjNZJ8OIXJUIM+xqxq14qyvb7nR4wkqOmDg5PUHrSnWoQhzau3HIBrOUoJ+8y4wqWvFDE0Bk6SgDrwDUFx4QiupPMa7uI2P/ADxcqD+HercniGNfvQSZPbcKUa8Gj3C2b8//AK1L2lKOqYezrPdGZL4LYRoF1e8wo24YI3HTHTpQPDN7GiqmuPhRgZt0NXD4jyBm0+Y/7VOGtMzH/R8cZzniqliIf0gVCp2DS9BNkuLm6+1Lj5QUC4/AVrLa24yBEuAPSsk63KIywSPgfxNXI6p4j1rULi4tYGaGCM4aSFTyMd2/wp03Gq9BSpzitTqtT1zQbBD9oAeXnEKD5vx9PxrnIPFJuNVjEOlolsw2Z+ZyvuccVQ8PeD7rUmS5vt0cLfNt/ib/AAr0Sy0e0sYkWGIKF7Dj/wDWa0nGCTildkp21ZkLf3GCRDDj/dIP86sf2pcxInyI/TqDmtc20ZbkHP1qhrkc8Oi3LWJ23IUbGPbJH61ywpyv8RpKcX9k57U9YtbaRvNjG8gfIrc5J9K9AsmWSxt3RvkaJSueuMV5XaaCnzzalKXnfkdSAfUnua9UslVbC3XapxEoyPpXoYRQTai7nPXvpdWPJLPw4Fuorj7VK7sQ2VXjBO3qevWuih0dZVkXdJ8jlCTjk/5NaxtkhnsbaNVYKrFi3UKCCP8Ax7FWndLQKShIlmC8di3f6cVzyjzv3jb2jj8JkJoaDjL59cirKaOgGMv/AN9VqMwCFmwoAycelRWDPJZRSSPudxv+gJyB+WKPYxJ9tLuZtzYW1lbS3FxJ5UKDLMzcCsDRb5Nf1KcWVtcCzi4aWT5cH0x3Pf2FdpdRLcQNG2OejYB2n1Ge/vWPoMEdrqGrWcYCwRSxmNOygrz+eKapwSatqNVJPW5KNKjIGN3HqaT+x1ZuY2yOhzW0EyOAKcwxyCKI0I7sl15dDFGioR8ynntuqC4sreM+SFeSdlysatyff6e9a080n+rjXaT1dhwPp6n9K57xVfTaLpkUlrDveSTD3LnPlHsWPvyPSqVGLdkHtZ9zkvEOkxWz3RZIvPkVZFk2sCxBAI5+o459vSu7ttEQQIrLtO0ZAY4HHavN9Z8VDV2iLyQb4lZV255JwPu9e3H1ru9AudZXS4ri8jUFh/qgCcD1K9QT7dPSta1O8VzF88krI1BoMG0LtGB2yaVfD9oDzGp+pNXLS6+1RllQgjvnIP0P+TVoDA5HNYqmkQ6su5kf2Bbbvlgj+uKeNCt9/McefpWuh5IwfagsN3I6Vfs0R7WXcoDR4QOET8qkh063ikZvJj3EAZ2irZcZxmjI3dc8d6XKlsPnb3Mu506Ka4dlijDeWAMrxnJ5rG0ZJTKtpqRt5JZlaS3lT5fMUHBBXHBH6iugvllO14ZSgHEm1ctt9vesTWrCFLcazCXa5tnUxsCSX5Bx+XGB60kk20yk9DYGlQY+4n4inDToFXAjT8qtI+9Q2CAwBweopScj1qHEFM5zWr3TdFEZuYxvkztUKTk9vzOBVTwrLdanBc3F39kMO/aiImDGw6qfXqOe9ReMZri40+/WC3E0SxKhk8zAjO4MSMcnoKzvhneXDx6jZTxqyI6zCdW6lh0x7ba09mvZOS3Dm1Ok126g0a1jmMKHcwG7YCOOSMfTNaVpa2t1befEyvDMu5CB8pBHFcr44he/tylu5Y2yGVwGG1R33d+nQVJ8PdWeaxl0qbcXtcOj9QUY9PwNCpp0+YctFdHXsJLWBBbwiTGAy7sHHqPU1xWoa1PpGuf2lFPNLZu4SS3nyNoOCcDPGO1d3nB61laxplhqarDcgCZzmNguWJHb3H1pLR6ipzSvfqa8ckcyB0dXU9CpyKbcwrPbSRMuVYYxXCeGdZmsdXuLe53LYTudrk/LHJ/QHp6ZFd2JA2CCDn3ocUFSEqcuVnP3GlQsNu1xyDwxrr7aMJawqDkKijJ+lZzMDwQOfUVqR4ESY6bRWuDjaTM6srpHLXbPFPd3Qz8lrtTHUHJP+FGoF/s1l1Z1uIt2Pryand15z/EMH3pBISv4+lRYLj77cbG4CAljGwGPUinxgxQqgHCqAPwFNdsoR6ikMnyD5abTFclLFgfpVCzt5Itbv5gAqSxxYORyQCKsCXAHBqHzgt2MfdKYP17f1pJaj5tDQDHnJFJwcZJquZPb9aasvUGtLGbkWGww+Y57YJqG5toruAwvnB/GgPk9h+NOyMfwj8aVmHNY5608I6fbak8yW0MbDkMicn6eldKkSRKFVRgVXk/1off/AA4p3mY68/ShtX1G22WN23oBzTg5xVcyc5JIpFmGCc0ubURY3jPXrRIiyqyNkqwwcH/Cq3mdqcJiO+Kb1EpWOe1TRPEltmXQNbmI/wCfa8w4+gYjP5/nXNSeKPHumORd6THMBxkQ8fmprvLiIXAKyXExX+6rbR+lUm0WyJJMch+rU1NdYplrTdnDXHxI8RMpUaOIX9VjY/oaytR8c3t5qEd0dLEbxBMYZsBlcNux0ycY+hr046JZ9cOAf9o0r6FZEHaGI6/eNXGUV9j8Rymn1/A4mL4s3JH7zRh+Ep/wqVfisxbadGchuAPN6/pXX/2HZNjKZB9Wph0OwjBb7MH+vb3obpr7P4kXv1OEj+IMNjBe2A0+SSORnAZZANuRjjjmq2l+O7fSpraSLT5FxAsFyisAsm37rD0P8676PRtOXaiWvAGB0qYaTZn/AJd0GT6D/Cjnp2ty/iNyfc4mXx7ZJetqI0ybyruNo5YNyneRj5icfpUOiePLPSLorDZTC3dAHAAyzDo45446j8q72XQdNnfMtqC23Gc0yPQdN+6sAGCfT/Cjmp2+H8RczfU5/wD4Wvb540q4P/bUf4VkyfEFbjxFFqU2m3Lx26FbeBZcBWPVjxyev6V3ieH9PT/lmeP9qlk0axjwVgBHfnmlzQS+H8ReVzg38bodT+2xaI+xgQ8LvkHIwe30PTrUlt4+1C1lUWOjskBJ/wBHZ2df+A8ZX6dK7b+x7TdxEB64Y1INJtA2RGSvf5jS54fyfiW5t6ORh2OveLNYIxa2GnQt0kmyzH6AnJ/KvS7VZBaQh5N7hF3NjG4461ya6bZAZESZPc111uAttEBnAQAflWmHleT0SIlsczJneev4URo/ZifrQ2NwOeacrZwCwA9TXMkkW2PwO+eKYWXYWPSsjxB4hh0CEGaJpJX5RFOMj1zUOm+JLfVLYTJFKMMFaIgBvXHpRJ8q5nsXCnKWiRyWv+PdRtdUmt7OKOOJDtVnXcT71v8AhrXpdb0ZruVVWeF9rbeAcc/yqzf3fhjXFe3mtcOG2qwhG4NjpkdOfwrGs9O1nStPnMJtkjcHMWegPp2zzWrcXCyVmXKFjusj1/Km+bhwMCqF5q0Gl2cUl23zsoGyPkk45qDRNcttdaZLWKZWhxuEgHeoTdiHRlyqbWjNKS8hgXdPMka+5qYSRva/aVdWhxkMrAgivMviVdX9veRRhXW1VBtcf3u9Y/h3xCloogmuJwryKXZZCuR3GOn49a1VKThzjVOL0PYmCOUdTnPQinhwu0HG5jgCqkDxeRH5bDZj5cHII+tMa42X6ID0iZuvuBWG5k2aDZCg4pm844A/KoPtAI5c4pwmBPXj0qiLoZBfrPdSwCKRJIwCQ67cg9CPyqwHYthlxx65qEFfPaTYoYgLkDkgZ/xp5mUdh0poTt0HBmY8EcU7IHXH4VXE0eSdvWgyIeStVYSZMHK5xk59akEjLHuxyeCOtUZL2BJoopMgyZ2HHBI7Z9amMqgjnI9KLA2iYSHP3M/jS72PBX8M1ALhc+gpPtALbdwANJuw1qK2Q2PunqMVmzPK1/sV2wGGDnitJCpJOc/WoDa/vvMLZy3pgAVEldaFwlZu5Y8xQdwBLY5oiJ3EkUjIuQBt9zS79mBxxV+pn6FjdkcHp2prucdKjSXkjHNLl+xHvntQxEUmXOFbGeGUHkCrAkUcAcYqMYUkDGKOwyQTUWG5dCUSL3H510cBP2eP/dH8q5gvgcjNdNb820R/2B/KtsP8TK6HFTEq5IfIp8TvIFQcknFV52y7c96r6jP5Gi3UoO1gmxT0wW4H9a5E9Tppw9pNQW70OA1S01jW/Er6dFcI8DXBMbmQBSpPJBJz07D0rp1n0LRNEaFnmnv/ADG5RdrAnj5SeMYrlJnM0ThQVmjOQQfToRRaX9wb3T31K0+0QNOruyHLFSemM4/rXUl7SNmtuh6WLouhJNSbT/Q1luJLb7BBb2nl5fcZc5aTJ4znj24rr1USLDABxI4G3PXByf6Vg+NptviKJYxgxphQPUNkcfhXSaPGJ9R3hQ5QeYULYwvbP41lPWzPOqO7KGu+HdRy07rbnnAcuSOfbFZmnXml6FpjeXd3bak0hBCKqrk8dSCCB/kVveLdZknEGmxRtHcTzIqK3fJIzkds4rmfFFrZ6HFHZKommK7jPuIJ+q5x9KuEUtEaupKUUn0MjxhNdT3stteXC3EUfTywAob3x1o8NeHLPU9BM93GTLK52uDgqBwMe1cvqtw8kW52Ykt611/h7VTB4atIkZnlVG/cwxGSQgE846D8a3qKUaa5e5jU0djU0+2n8NwgC8E1mSA4kG1kOOo6jHatTTrk3dxLe8hGHlRKf7oJy34n9AKjt7WOZIZ590shAIEvIXI9Ogq2oCEkDArilO7u9wm+Zbalvf3zmpFcdRVRXHBzkU4SAA4PWmpHO0WvPbGAtMeToMc1XMuB1pplzyGp3EWAzdqdlic4FVlkI60vm5OARSbBIZesWNuhAy0wI9sAn+lSCRuPTNVZmJv7RTnkSH8cD/69WSMMQehH60N6DtYSV5liLxKJHUghGOAwzyM9qxfFniaUxxxx2E1r3DAjAI9CK1Zpkt43d3AVea57Tp/7e8S20EztHaksFQHkjGcj0J9acHd3toddCHNF36GroHiSLV4SrgR3CD5o89R6it1JVzk9DVR9A0yC/R7TT4o0jyWmIIx+J71Qk1mC0bbOHU5wAOeOx/KplJX90lYedR2grmxJLgjGfwqvNfwQECWVEz0DHrUFrfQX0XmwOHUHB4wQfQ1zXiSVYdQQNIoMqb1B744q4Xk7GMKSc+WWh18d3G43I4Ydypp/20j7u7FeZaXfT2mrRlCSJHCMueDk16EC3496uacHYyqU+V6FoXG45yc0faCc8moVf5DgfjQJew7e1Z85nYsC4ZhyT7V2toxNnAcnmNf5VwnmEjFd1Z5+w2//AFzXv7V0Yd6stHCSuBM31Nc94l1NXtE06N2Af55cev8AD+QGfxqfUtTFqZzs3OnJUjO36jufQVzOqzQ3mlT6vbyyKVzGA2CWYbQSfz/CueEG2ehg506NTnqq5h/2nLDfxB4lk2/K3OA+fXHSmy3M9mcpKkihxJiP+E9cex9qXSorWeC5+27o5lljAGDwuCWJHfoB+NXLV7CXU7e3PCMCdkeD1U5Bru0i7WNZTlWTlKXoRaPfTLqb3E9zJkw5Uu2ep4HJ4r0jw1qFtpulXt3cNbxXdzIIx+8BDY9DnB5JrzmGzXat5fKsMBTdDbbsNIg5yx7L79T2qtqN4upGC2s4mkYHBUKB34CgfdXB6e3NTKHPLQ53NKPKkdrr3ie207xks1yrOluWjBUZIITGQPXJrA8ReI4JtfhvFXzbdmDFOM7NuACOx9qyb2yMM1rbajuSeSQO+35ikeOnuetTTGxjVY5UWK2TMio4w0nYZx35JpqnBWa1JV5aXsYWqXJv7p5IohBB8oEaNkDt+ddjY6jCGWGCC2lckJKrq4ZIwByWUgEfmc1ykiC8lYWcDRQ8csc9OmK3LLTjFGpyyg43c8sfU1dSyiugXSut/P8AyO6GpRwny9jBR8u7OSPTP+NINR3njIGKwISxG987SAFB9u/51YUkliD7V5/syW4mt9u4wOlOF8MDnj61jFmB4PPfFRNMYzxnPqBVchm7PY32vUPenC+TgZAP1rj9Q1K8EarZx/OTy0mMAfSn2BmQie4LTTnuzDav0FN0tLgk+p2C3IZRSicHpWB9plwAI+M9dwpVuZwc4Az71HIxOKua99NIXtZ4wzeRMCyqM5Ujaf55/CrUl4Gt5jE4LqdowM4bsMViLeSE8YyDxVa0upFup0umzMx3LIR95fT6ilytmkORay1LWr2mr3dvFDJLaKWUGVI24Q+hPc+1RWmhRWyiYXMhvEIMcmcBWHcCg3hkYhQeDVeDWPN1q4sEjZ5EUspGMZxnknoPc1oue1loV7Vt2WhU8TavrLWzxy3zuwYfIpGP0684rZTSru/t4DqFvNbX5RUwuG8w4zjH97qcdqwdXsf9MMX2pZCEDkxj7rnqPfBBrVPiS+g0mzv7q5PnWpcwkn5mBwCTnr6euM1U4Xirbno87pzdSi7K339yNNN1nQ7pntrK7kVm5URkmQ/lW4PD1z4pgUapps2nGLlJHkXIJ64A5/Oubk+JurXtk0rwoDDINroSMgjkMPp6U/TvG+p6lfJENgLuNm1s984q3TqL3rarqeZOUakrlm88LyeHNS8y1uxOuMoZVzj/AOvWtpOpvewSCUBZom2sF6HPQ1s61ZSXemW03IcQhj/n8q5GG8NjI0iQGRZ9oKqQCG7Hn61m37Ra7kzjpodMJD2NHm/L2B7VlfaSC3NNF05BHTB9ayszPlNgTe9egWX/AB4W/wD1yX+Qry5Z8Ic88V6fpxzplocdYU/9BFb4f4mK1kfNN9NcXd3JhnJ3ud7NtHHWrb3ttb+EktFKzGW5yw6HAwW56gHgfhVDVZrq+vHMzllRiqIowqjPQAcCnyWsa6dBtZC6mRnXzFBAJGM5Oc8V1OKdrmtyLUrh7u6EkaNDHJFHlAc5KjH9DVrwyiDXoAWweQeM5z8uPxzUNtf6bLbxw3QuIGRSvmw4fPOeVP17GpdMubK21+0WB2nBnjAkWMxfxjqCTTfwuNhrdFJ7y8ubxnUvLcSZThd2eMd++PyrS0fUrDRrFjNva5mHMkD4kQeg6gfoaq38l7LcNAvl20UTOi+WNpbnBJPUk4plppG/GFLnrk9KJWcfe2Grp3RVe4lub1prYSKufleUglR/jVq201pJBJKzSuerv0rctdOhQ/OOQOhGP0qdo1Kuq5JA4/Cs3W6RFoVo7eOJcY59elaCBXhXdxnqKgnb930HI9KLVx5Cg9c1k9VcTbaLyFf4hyPenM2ASABn2qLeCTgjNPwWXAIOKkzsxr7sgBuCe1KYw3U80zcFIOeB7U8yKRuoBkJRQQdoJ78UvpgYHpTWcLnABHqaXcM+maY2yUONuM0bwehNRb+TwKQnJz6UWJLCcnqQT0Oajnt1kXDFsqcgjqp9RQjqcMRjHFOeQgFRx3OKWqGnchUSySJHnMjEANjAz71IunxFbwJbNKm4LeyqxIZ+yZHYd/U/SrMKCyhWQkm6m/1XP+rXu317D8TWHd6ZeSatJaafevbwuvmPtkZUj4+bd7Y5/SiPvaJ2Oik4wknJX8jSs9Ps9MuvtEwit7IbTI7tlUJ+7x1Prj6019F0/X9btbO31iO4IlKTxqp2IueGB/iyOw9aztWjg1GFLW3u0S2i+4CCzMe7Njuf0HFVYdKWCWWQXEqGQAKViYEEeh4q4xt7zevodVROb5Uko+qNfxf4YXQtTEFmqi3uIgcM3Vhxx7+1cfPbPp7Q3VvIylSGDjqp7GvYNejt/EugaYd7i+ZTJaBl5kZRhkJ7Nxx68V5fBC91ePZSq0aoWLbxyVznH55rSlU93XpucvsnUkoJavY9I0vxhqWv+G4l0zTPPvlKwXJf5YkJ7gn1/SuS17Rb/Tb63i1GYNKHBCQ52L8pPB7n3rqvDGtaL4f0dYJ5xDL9sEkiKjMdmODwOegrP8a63pmpzWt/ZXPnrGNsgVSCpPAyDWcLqXurQVSm6cnCb1RUsrkzwbXOZI+Cf7w7GriH1rkbHULiS+2R7U+U7Vb+L2Jrai1NeUuFaJ8456H8aJ02mc++xsbwa9Y0xs6TZnn/AFCf+givHYZVki3A8etewaWR/ZFl/wBcE/8AQRRR0bBo8Dkt0E8ionVmHr3qncWUajD4YdwecVaupiLiQIwxvPTjvVdhv6njv701e9zoZmmwgkf93GwH161esbJIJ45dnMbBsDqcHNL548ngBT7U9ZDu3ZzkVo5SaJ6k90YZvNmVNryMXwTnAJzU1vE7iMW5PmOwRVxwT6VSj3zOqKAWJwBniuqg+1Jp8MQuLcGE5BhIYrz7VnK6RV7sjvtHa1to3mnXzTncRwq4x379R25rKVyszqDvHZh3pb2/ujb+XJP5iSSHJ4PTkU3TdSjsluHMSyPhdue3J4/Gko6E2Y6RHjtvOkXETnCZOCx9h3HvUKsEHGG3HgCoLy6mup/PuGLSdFA4VB6AVCrsq5UkH61fKC2LEsk8d6IyXCBA2V7nP+eKtLMQAfmz34qg0z8Hccj3pxkd+rj8TS5RNFtrolgeaQ3ORg4NZxJ3fez+NPCFsc5quUlxLpucjAwKRrjgdM96pLHIuSelBL44zRyoOVFk3Um7oKU3Dc5NVCHyMnikUY4Zj+NPlQuVF0XIADAjj1q/abRE1/dZ+zIQFUHBlbso/qewrOsIoJZsSyFFBwSBkj3qfVL1ZnWGAbbeFfLhQendvqTWco3dkVFJak/2qe7vlzl52I+Ve56AD09hRqM+IHtIJsBcG4mHO9h0A9VU/nz6CoZWOj24BYrqFwo8xu8EZ/8AZm/QfWs92JiWKIglQR7EZ4/nRGCbutht23Om8O+J3t2W1ugNiDBKgEr6Eeq+9dtcR2mp2YjnUTRMMg56e4PavFwjNKJoZDFKgwBnG4+nse9dHY+MI7ZUVY5lIGJVJAUn1wOn4VzYjBtvnpbnTSrq3LM6i70gWtjbwmaeS3hneRWQZdFYD88EdfeqHiXTUvWstbW6jkmjAjlbzBumXop4/iBOCO/FKPF8rBWjsMg9DvHP0NYWq66EuI9QFmbaRCQHjZT8x77TkZ98U6Ea3N7w5ThC0o7rUr3yjG7jcowcVzf2yVGlUN8j8Mh71u2Qm1DS7q5dkZFbervIN+OhXA796p2umRXENxIYdzRE7v3u3dnoAMda7qdoKzJxtb6zP2kVYqwS7BBcL95HGT+hrfkaOZNpwR6HvWKBDBIbY2zRMzbTufPNRm/exlEW07UGDk5B9/anKPNscmyuzZiSS3Ba3kKgfwHkGvedFZ20HTiwG420ZP12ivBLe4S5iDxE89R6V73ouf7C0/8A69o//QRURvfUT8j5+uiGuZiOBvY4z7mow3y8028fbeTY6eY386g83rmnys2FLBGI7GnqcqOe1QD53608Ng4HQVVhE6rnOfxzUs1z5ixwooSKMY2g9T3J9Saq+aFySc0xZhu9KOUCS58wQPsfAAziktEM4BdxlNxwe9RsTNvHUbef5VNp5liuXwdkDfu5M9Nvf+VO2gMuPNGJomxv2qu4ep/ziqxHzn68D2pqThnZcDccnI44qKecGTK5PHXFJR1sGyLLsMccGm7h35qm85JXmgSEsOcVXIK5cVl3ineZjO3iqCSnd71J5xLDNHITctrOx6kDt0o88rxgj8KrCVc8kfhRJIMcE80co7kpuGLnigvuHXn6VUkdgeDjPtUwYBeTzinyk3LCFgcqea19Pe3sFkvLjbJKo/cxsOC3Yn2HpXP7yCME+tSfaj5ZiLEoeSM8VEqd9AUralieR53eSZy0jnLs3JJNREKEGcZ9ahM2zkEAdKVplABPIxVcom7hICGIOMNxzVK5SVG3Dlc8+tPe4MrAIDtz0PaljlZuCMj1q0rE3I7TVbiyyEIeJuWRxkH8KtvcabqaFGZrOQ/3/mTP16j8fzqq0Cl964BHtxVeWIEFimD7UcqeqDmdrFttKvrS8b7OguVRPN3wfMrJnrx/kV0fh7w3c65FczW88Maqw3eYTnke1cpZyXNnOk9pMVdOQQcfhWvpvi6702WVhbxsJeXUMyAn14NRVjUcfc3HTlFPU9EvPCTanFEL6aMSIoVWhhCngcDOelec+ItHudNuAk6/P0DAfeHrWyPiApGDpuT/ANfUhqjqniq31OJUawMDIcq6TMSD261y4eGIpytPb5GtWpSktDEspZrV9yq2O4x+lfSuhvv8P6awHBtYjz/uCvnFNbuGGJGmkc/xCZh+lfRWg/8AIu6ZlcH7JFxnOPkFdUlrqjmj5Hz5fgrqFx/10bj8arZIB961btQbuYkAne3b3NVCq5PA6+lCOhsqR7ud3JpejY9qsoq4bgdfSnIq7fujr6VQrlUODHx1qPy2IJUfd61eCruA2j8qmhVQX4HQdvrRsCdyh8/kOqkqZON3sOtRu5STAxj3q8VGBwOn9TUEqruHyj8qaQNkETMNwJxkYOD2qJnbbt/lVoKOeB+VG1euB+VVYnmK4wANw/WpflJyQRUm0YXgdfSrW1do+UdPSkwuUYxtb5h+dKCN3bH0q2irvIwPyoCLuPyj8qAuQEoBwf0pgbORjp7Vd2Ln7o/Kk2qC2FH5Uh8xTkwxB9OKaM4xkVcKLu+6OnpSxou77o/KmiWyjt6Zb9afgbiDVpkTcflX8qkEaY+4vftRYnmKRVGHHbrSsU28n26VoJGm3Gxfypxij5+RfypBzGOIwGyAACKWJHKNg9K2BFGWGUXr6VZihi3n90n/AHyKbYkc4C4OCKV1YjpnNdF5EWT+6T/vkU3yIc/6pP8AvkUybnNeUEPFHlZXpXTLbwEDMMf/AHyKlS2g/wCeEf8A3wKYXOOMHJxmkMLHFdqtpbE828X/AHwKlSytef8ARof+/YouSzkLWFUbcfmIHHtX0loQP/CPaZ/16Rf+gCvJrWxtPNX/AEWDr/zzFez6eqrptqqqABCgAA6cCsZvUuB//9k

辅助函数,用于显示检索到的图像,作为生成响应的源上下文的一部分。

from IPython.display import HTML, display




def plt_img_base64(img_base64):
    # Create an HTML img tag with the base64 string as the source
    image_html = f'<img src="data:image/jpeg;base64,{img_base64}" />'


    # Display the image by rendering the HTML
    display(HTML(image_html))

显示与检索文本相关的图片

plt_img_base64(response['context']['images'][0])

q2:

response = chain.invoke("Woman with children")
print(response['response'])
print(response['context'])


########### RESPONSE ######################


The image in question appears to be a portrait of a woman with children, painted in oil on canvas and measuring 94.4x114.2 cm. The woman is likely the central figure in the painting, and the children are probably depicted around her, possibly playing with various instruments as suggested by the text. The woman's age is given as 21, and the painting is dated 1632, which places it in the early 17th century.


The historical and cultural context of this image is significant. The early 17th century was a time of great change and upheaval in Europe, with the Thirty Years' War raging and the rise of absolutist monarchies. In the art world, this was the era of the Baroque, characterized by dramatic, emotional, and often theatrical compositions. The fact that the woman is identified by her age suggests that this is a portrait of a specific individual, possibly a member of the nobility or upper class, as such portraits were often commissioned to commemorate important life events or to display wealth and status.


The symbolism and meaning of the image could be interpreted in several ways. The presence of children suggests themes of motherhood, family, and domesticity. The fact that they are playing instruments could symbolize harmony, creativity, and the importance of music and the arts in the family's life. The woman's age, 21, could also be significant, as it is often considered the age of adulthood and independence.


The related text mentions that the painting was discovered only a few years ago and that very little is known about it. This adds an element of mystery to the image and suggests that there may be more to uncover about its history and significance. The text also mentions a French artist, born in 1702 and died in 1766, which could indicate that the painting is French in origin, although the date of the painting does not align with the artist's lifetime. The mention of Marc de Villiers, born in 1671 and the subject of a painting dated 1747, suggests that the image may be part of a larger collection of portraits of notable individuals from this period.


Overall, this image of a woman with children is a rich and complex work that offers insights into the cultural and historical context of the early 17th century. Its symbolism and meaning are open to interpretation, and the connections between the image and the related text suggest that there is still much to learn about this painting and its place in art history.




{'images': [],
 'texts': ['31\n\nThis portrait is dated 1632 and gives the age of the sitter, 21. To our eyes she would appear to be',
  '3\n\nThis painting was discovered only a few years ago. Unfortunately very little is known about its',
  'oil on canvas, 94.4x114.2 cm\n\n4l\n\nat which they want to play their various instruments.',
  'French, 1702-1766\n\n46\n\nThe sitter, Marc de Villiers, was born in 1671, and since this painting is signed and dated in 1747,']}

注意:该查询没有相关图像,因此图像召回为空列表。

q3:

response = chain.invoke("Moses and the Messengers from Canaan")
print(response['response'])
print(response['context'])




########### RESPONSE #############
The image you've provided appears to be a classical painting depicting a group of figures in a pastoral landscape. Unfortunately, the image does not directly correspond to the provided keywords "Moses and the Messengers from Canaan," nor does it seem to relate to the text snippets you've included. However, I will do my best to analyze the image based on its visual elements and provide a general interpretation that might align with the themes of historical and cultural significance.


Visual Elements:
- The painting shows a group of people gathered in a natural setting, which seems to be a forest clearing or the edge of a wooded area.
- The figures are dressed in what appears to be classical or ancient attire, suggesting a historical or mythological scene.
- The color palette is composed of earthy tones, with a contrast between the light and shadow that gives depth to the scene.
- The composition is balanced, with trees framing the scene on the left and the background opening up to a brighter, possibly sunlit area.


Historical and Cultural Context:
- The painting style and attire of the figures suggest it could be from the Renaissance or Baroque period, which were times of great interest in classical antiquity and biblical themes.
- The reference to "Arcadian shepherds discovering a tomb" and "Poussin" in the text indicates a connection to Nicolas Poussin, a French painter of the Baroque era known for his classical landscapes and historical scenes.


Interpretation and Symbolism:
- Without a direct connection to the story of Moses and the messengers from Canaan, it's challenging to provide a precise interpretation. However, the painting could be depicting a scene of discovery or revelation, common themes in Poussin's work.
- The pastoral setting might symbolize an idyllic, peaceful world, often associated with the concept of Arcadia in classical literature and art.
- The gathering of figures could represent a moment of communal storytelling or the sharing of important news, which could loosely tie into the idea of messengers or a significant event.


Connections to Related Text:
- The text mentions the theme of "Arcadian shepherds discovering a tomb," which is a motif Poussin famously depicted in his painting "Et in Arcadia ego." While the image does not show a tomb, the pastoral setting and classical attire could suggest a similar thematic exploration.
- The reference to Flemish art and the interaction with Italian Renaissance artists might imply a fusion of Northern European and Italian artistic styles, which could be reflected in the painting's technique and composition.


In conclusion, while the image does not directly depict the story of Moses and the messengers from Canaan, it does evoke the classical and pastoral themes prevalent in the work of artists like Poussin during the Baroque period. The painting may represent a general scene of classical antiquity or a mythological event, characterized by a serene landscape and a gathering of figures engaged in a significant moment. The historical and cultural significance of such a painting would lie in its representation of the values and aesthetics of the time, as well as its potential to blend different artistic traditions.






{'images': ['/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD6APoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDGvMNpKnI3rgj19Kuae3nW0UhYghcdfSq8MBuLFlU/MEPH0qDR5WdmtiepLD+teTJXi/I6Fubb5lidTwCME4rmpWksrhjkq6/KfWutto2MY4OCOd1cxr0ZF8flIBUYzSotc1hu9ilZ/v8AUIUzwXHX0613kcLCNmIUZOcA5rkPDdus+rEk4KRlh9eBXdwIzFVPU9AKqs/eJWw1IHlA2jIFRurKTuXbjityxtmDDeuMnpUeqQgPjHHXgVyxq+9yluHu3MCYKBnr9aou4BJq/cwsdxXJFURDluhzXZFnO9CS2DGUddveteM7hhRz0NU4IZmTAXAPcitKC1aMgsc4qrCuWLfcAFPOK0Y5Rs54NUYhgYI5qZQTzjFZyitzSLZoRtleTUm35MA1UjbCgED0qyjEMM1MKkoS0KlBSWpNFEAcsT1qYrGCWCjNRh1ce49KU8rn9AadebqNWegoRUSreSAx/LWU8xJyTV653ISB0I4rPkU5ziqSsrkt3ZRvIvMhyhI55rPZVOH/AIgT1Hb/ABrUuk3WzAZGMYxVGSyaPaxJYsDwe5okr6oS7FKWeUIGRyNrbmbp3xWXd38jwzMB8gJByc8mtMwNPN5TjaqqGwPXNZ2q2y2VgyKB87+lVTimrik9bFezg3WKsx5x1HrUVq5DkA/JtOCD3q7HGy2MCcLuH5ms+CFCzqX4LdO9a73JuWDOFEeBlt2CatSB5DgNtOaHhTZtC9Oaga48udUPU0rWJvcR5ZhIyO5yccgcVEZCgLbsseDn1qWWWN1O8/MTjKjpTAqHCv1PQ+9Z8upd9CzDcNI6qRkjrtPSrm4+lUbGNVlLM4Y9Mk9qvZX+9+lHkQ0UNHY/Z8jlgxH0rN1GCTS9UEsWVz+8jNX9EWSRpo488MOBVjxFCJNPSdgQ6HH51le07dzqt1L2k3i3Vkr9j68nNY/iVV82I87ipyfbNM8K3BbUDZEZVwXU+mBk/nTvFCsl7ErKynyhwfqamMOWrYq90V/CpxrTdcGI9PqK9BtpkjcFUGR3rz/wuwXWsHujV3cYJJK9AcVNfWVmJabGwkonQ7cLjk0C2a7J35AHRjRptk7FZWyAf4fWtVl8tTj5c158vdl7putVqczLpknmbWG1cctnimLpsMZz19q0ZcmUksW9zUJIzkd67KMpPcynGJF5QVRgVJk7cAUH5u3ApQOAcGutNswasJHjOSKlyOOeKjIAGaaScAA1Vu4rliKZVOTgin/aQx44qqFCiiPmQc1HKVzM1YzkDnFWVjyvDVSDEDjvUkbsp4bOaapyb0Dnih09sQuevqaz2hJP09K05HDDluM9KgkI6gVT00YJX2MxUy2OgpkkKtIG61adcN071GyAjjrUwl0YSRkFPL1iVSB+8iBA/GsbxPASbVQpxkkntW/e/ur+3mI4b5D+NZevSbo/LHZgavmtchRvJEEtqfIjbPI4GB61nR2228JcA8YNb8CNLbRmUqCRztqpLYrC5mDli33Qx4P1q2yEV2O1G2qMgYrDnC/aHOPu5Jy2Dn2rphaJJE7K+DkjkcVi3lopUlWLEN9CexppiWhUiGCrhj1wvfA96mZVCSIQWI681IRDbNHEjYJA4+tadvaeYu5QCD1GKLBcyrYgxBh2OMZq0HbHU1KloIrjywvy4PFb6aVa+Wvydh/FWbXcpeRznhCRBfXkbAFmjBUd+D/9euhv7GPUbeS32ld6Yz79q4/w7cC38RwZxiUmLn36frXpiWiPhgufXnpXm4ifs6131O+MeaB5DYStpurpMQd0MmGA646EVteK54LhopIZFkwOoPrVvxToLW2pyXVuu6OUfNjja+K5C4V0kIY8g4Irshy1ZKomZu8U4s1vCkX2jxFGoJ+4zYHsK9Y0y3VCOARnBzzzXlXgklfFcICht0bqRnHGK9hgj8kcDC9a5Ma37S3kaUkuW5ejUAAYAqG4ZcEAigTDvnioJpFYZAya4oJ3NHaxQuSqr6E1UwelS3DBpT6U1QDXpUY6XOWbEA7UoGe9OIxQFGM5rpjpoYyYwgk0rL8wx1p8aFs47VN5DFwOK0UW0TdIqlSWAGasxWuMl/yq0kK8hRUoQAV0QpLdkSl2KyQkcnhQanVFjX5RUpUYAoAByK1UUiLtldlY9utRuG6VcIGP8ahdBkntXJUpybuupvGaSsUZAe/WosH1q+Yt3J4FMeFVHTNZOm4vUvmTMbUoGms3Cn51+ZfY1yl1e/aL2KJ1YM8ihgOcfSu7kTggDkjBri2tR/wkds2QMSF8H6GpVnKw1tc2vsu1NiOxPc55xVJ3h+0BCTIwyMn17frWi5ZUYrgMAcEjj2rLlt5Dp8hJO/ODt74/pWqVjEpX5nWFWYkMjeWyqfvEf/XqOFGucLKduR8hUfXr7/4VoJZTXr+W5fylGFJ5356nn8qlg0m6MEsUixxhQTER0GeuavYncyIbSLzPLuQpVJApw3I+g711VusKIPKUeX2IrDjsZpnhBQAOCGY4GFz2q9pyXctxHGqyMAdrZzgDtSTtqM1LaCDduMaFs9T1NW/Jbsw/IUqQJDzKcY/hpv2i3z1as3JJ6GiWh5HuMN1FMODHIG/I17PayZRWUDDc5rxudPmdWGMGvTtCmkm0ezn3gboxkk5yRwePwrix1JzSkuh2UZWumbVxbQToyzIrKVIIbpjrXj/iO2SDXLqGMAKJOMdK9dZ1Knj5z0yOn+eK8x8YQmPXZR2YK4P1H/1qywLtUa8h1V7typ4LU/8ACV27dNqsx/L/AOvXs6kMg3H8q8V8OSeT4giXaD5qsn9R/KvYIpW8pcjnAJpY+/tV6DpL3C1JhR61XMigc4FK8mWxjp1qCSLfjnNc0NxyKNwwaVgoOD3qNDg1dNv3AxVd4DuwOa7qc10OeUWOVt3XFDbu1II3jIDcGpkG5+B05zXXCaeiMpRsS2ozHyMHqanAxjtQqgD5RS4J616MI8qscrd2OXjkcmngMKaox8wNSoRgk1pbsL1AgdB1pgbB6YBqQ+Wxzkg0wsFbGKTj0BMViMdBxUO5WbA6UrtuwKqSXCw5Ix6ZNTNwpxvIcVKTsi6y9PQVFIAQQBWZNq/lZGUPPrUZ14qnEakkdSa53UpS1NuWa0NBI/mz+lcfeskeq2jHOFlcN+RrqbLVre5Q5+Vl+8M9K47VHUagXfO0ZIHvnFc9XlTTia003dMuxaos8jo645IEa8s2D19vqauzQO0SGSI+W5yE6+/zH0/wqOxtfs1mE8onZgvnG4k85JrQSJbeJyFYpIpLgjJ+n60lJilFIZbXcDy+UilZCobDenpnvVrDHhcZNZUMqr5awkiNflJI55P51q2TLMplcELnAzwa1Uu5m4lOW1LyKcBWHQY49qvxRPFNFK3LYw23oDT2RXkwMDae1V7zU7e2DAuDjjaOSTTnrsEVbcS8ky5GQABnOargRY6n/vquevNTe5mJ+ZFGflPc00XjYHyislHuU5GP4itxba1Mg/jAbj3FdN4NuEk0v7O5/fW7sAM/wnkH881jeNrYR6hDMM5kjwc9sH/69M8F3oXUp4TgK8XC59D0HvXNfmw6ludlvfsejiQu6FucDJb0rgPHqqup28ibTG8PG0dwT/jXZhNtsG39MDrxXH+OgmLAqMZ3D8OP0rChOLrrl6jlF8mpy+ns9vcW14oyyThhjtgivaUKywiUAgMoYD6142P3Fm8i84yV9M4/+vXslk4NpCPSNcH8BVY1XaY4WSsTxxKy5AOaf9lUg7W5FPjwfT6VIoxyBXHFcju9hvVFRYGOd3QnjJqQ26gdAO1WlHUtxUckZZsgg130+W1kc8rlBoAXBIJ7CniIBcBcCi6ultXCEZbGSPSqzarEwx5QDHvuropzjTZnKLki0dqLyaaHTGS3B9Ky57kyMSMdKoS35UbVcgVr9bb2RHsV1Z0hdTjB4pPMGMda5kaiyrnJweTTYtRPJZ3CexreOKS6GbpHVvcRxJl3VcDvWfPqtunIfccdhWDc6gsjgDJweFJ61X8zzZDhcDvzkVnPFyV7Fxopmy2ovKrSZ+XOKpyXfnuyA7gATgd6pNOU+QuAO2Kow3SR3G1WO0/xE9a4Kk51NWdMIxjojSbb5fmytlT0UDkelVZnteoZmLDIyelRreNOSWIC4yMdD7CsjUrt1lG1dq8Y75FFOMm7Dlbc0ZZ1icoCFBA4HXk03UpAlzaSsFC8EL649ayFu97ljnnueKNSaQ3EBkcuCMgZzxjIrbk95EqWh0sPiplkKHYzew4ro7a6GoxpMv3SOR/MV5Wh9Tz7cVs6ZqepW0flWpIGeWI+X9a0ldLfQiyfQ6y7VIbeQNiNl+bHTPXoawRrU4KtDOqRNyw7k9+vaqV1HdSP5l1eoFUZOCTWLf3MSswiZmODhj3pQcZO0QUW9zeu9fd2dPtKgFuBnFZxvIt4ZpRgnrnNYDFnXLAjd1NMLFSR6dK6LGXIrnRpLG8vMqMDnndVgXUGP9cv51zDS5+tPEnyj5BScAsjufGlqfsdvcZzhyhJ9xn+lcz4ZuRZeJbWRvuMTG3/AAIYrsvESifw/PvOSpVv1/8Ar159bnZqFuT0Ei/zFcVCnai6cjrlO8uZHsnmqR0GK858bX5n1wwjAit1UKB3zyT+td1MjyKBGwUDnp/nivLNfk361dktuUucc54HArPD0YqrzLsEptxsyaRAbG0t+rzOECr7n/8AVXr2kzb41i+UKqgDAPbvmvGNEZ7rWbKNxuWAl/wBzXsWmSoIkkBUO/LH3rPGQlzRivM1jKLi2zZxyQvBqRJACMnNRg5GQc0qtnIP6VhKnKy5iVJdCcsu3PXNUb+8NpErIBuY4ye1SNcwRMFeRQxzgMQM1k6ze27iKMOu7JPB7VUedapCdjPnnZy0jsSxPJPes43GHA6++agvrreAUY9flHrWSl6VlKHv3960gm9WKSsdBPeLHGE6H1qj9pjAJLDC9RWe0zM5dnJHQVVJDFuOo59K1gnsTJJ6mk97HN6EAcGo/tyRnaxIYHHFUIlKMuBuO7AyKivWCscdc960S1sQ0rGlHeIZixxtzxnrVozmUDb8oPGPWuT83Z8+eC3StX7UBp6GNvnI3HnpzTnDYI2sW5y+CRnoeMVmiRt43dB61Bd6mXnIX7o4NUZ7wkgLtwfxrSFN9QbRuQznyXdTtXPHOKheNrt89MVlw3Y8sBlLMMYFW4bq5cnJESDsRk0ODi7oL3ViOZQj7AeehzV2+lX7NZoQyybVVgRyD0zVSKVYyzRDc56uetaOpwn+z7a63I0ku3OOcY6E+9En7yTGloRwabEjFpWZyTjHar7HbGoVtqg4+aqqOVaPGeR1zVTVjPHCXySp7elYcrqSSbNNIrQp6teM8jQq3yhuT61lu4GM9KhZ2cSN/DnNNJJGO+K9GFNRVkYSldlqWclcYwM0xZAW+YDvUbbpFJ7d896fDGTgAUWSRndkhAJyBipQ/A4qNlIA44pQrYosB6P4hZU0OYHJBKjP4158R+9RgPlDjPtzXTXev/2jp89q8CxtuUptOdwB5FcrdNtZiv3s7h7Vx0FLZnRLQ9ZubpYtPlkD4Kxk9cdq8ku5He4d3XBJrprrWpLvRUYsMyYD/h2/OuTmlZpWPWnhoNXuEzY8IW32rW5RxjyTkt25Fem2cTw2saE5YDqOlea+GBNC011EwUn5MnuK7SDW0tLcNK6E54VeKjERbndDjJJWZ0QuzaxmR2woGWJ6VmXvja3iQ/Zo2lfH3jwua5fU9am1V3RI5EiUYwv8zWUFWQABzkcYqYwt8Qn5F6XVZby6kuZ2LOT3/kKtm8llAyHXIBHHaseOFo5eRuYdB1Ga0DI5zvIx2xxiqqW6CjEtzXIRAXG5yMDmsyVwxYj17VIziWLfzhTjn61RUKQWLYU9BnrWdONtTSWpoKFa2MjZJAwoquZVjAHOW6j0q0Hh+ynGVb9MVlS8MSGBXpk1VPVu4TVkrFk3K5DAnjpg1VuCHAZieewpuUSIkMuTx16VRa6jzgZJrojG70M3oPBydpzSCRlDgdCO9Qm4YAbe9Is/XdkcY4Ga25WQN+diQO+elSCNY1VnwWH8NI1xbiDYFZSecjvVRnwc9jVJNiehoWlzFGZCVw579MVOJEkBIIOfSsl0+VWYjn3qzZZmlCIQfxqZRS94pN7GmFHlccD2p19Of7Ft0QgsjHPPPX/69RSboU2s469Ae1LKS+kh0HVzx7VjbVPzLeisWXv/ACxEUjLbfyNYt/fSy5iJIBySM8UCZyscasQwG489ar3Sl4wR1Fa0qaiyJTbRJaQLNAWycFju+gqCR1BG3GzoD7VLZsf7PlQHDMSv4HFVpF2kqewFard3E7cqBG2k85BqzACG71UVwGyRkGrUbptB3EGhkGhHGHQHHNTiEYHyVWjuFK4Ofpiri3ShRz2rnlc0VigbgBs5xg1WuG3KSmeTTN3zHJqWFfMl5PCjNXa2o73LW0rZLGWwiHv0BxmqKoZriOFcAyEAE/zqWacCExfw5ySetRWN4LW5ExUybVIAzjFKKaTaBtHVwwx2VuIUuAFQYGB1PrTjHFPgtMCV6KFOKyYtYhucLNJ5J6fMMj9K1bfRpbuPzYrldpXKsM4I9q5Z3jrN2Lir7IkhsFk8xmlJHJY44pkdvaiQbZQGVurEelNbw7eDkTx4PqSKhOgXkY3ARP8ARjU80X9sqz7F+VoRIHDAY4J3ZzTJJIBAFVweOTnqazWs5g/lmJQ3oMmlitpWz5sqRqOgPBNHIrXuVG/RFlfJlhZIyXlz8qqDVGYeTjccP3Udq0Ip47OFihTcexOc/jWXes808krKBk9qqndya6DnFJX6kct9IyiFPlzwT7VnyPIcq+Rg81oafHuu8tg8dDUN5FI9w+VwwPNdMOVOyMZJtXKhb/SCOxFKsW7kcDPWnLaSs7ORhcdTU4VBGNr54ya0uuhCi+pRlba2D2qOMl3xnj1qaZRI2V601Y/JBPc+tWnoTbUlk8vYAeWHeqsrkYCjgHrTuWz602QHgYFNKwm7kbE4x1pm3ByrFffNTbTjjv0pNvAU9e9O4rEiXs0YCM29emDW2SH0NJER9u4jeem70/KucaNgOB07100a7PDaHOQ+SR6elY1rK1u5cb6mNG8KHJfn0p0pjI+/xWaAwY8Z54p25lBBP4VtykXLNvhCwBzn9KJx83HQ0y2YhmboCKlkGYkPOeQfzpPcpbECBGOGbmpUT5jtbIqm+Q5wcU9c7QQaozuaCZU9R1qyHGBWahbjnirYPArKSGmVyMEk05X8sBhSOMN+NJIQIOvPpSNCOaTecmkiZUJQqQfpTRHI4yqkgHk9q0pbRUtSGO6cck4z3/wobS0BRb1KjIrIMfe7Vb0rXLrTX8qNt0THG1ugrPJIzto25cEd6JQUlaQJ21R0c11PeOXaYEf3UbgUkb3GMK74H+0aybKUQyEZIyfSrguG/gBP0rB02tEaJ3LYWcA7ZCD7NUZjcP8AO+R37moI7suD1FNEzs52gk44xTUZDuiWQLyMZ9M02NVcYLgZ7VEZCVz1J6U/UoEs7pY4Z/ORlUlguMHuPwqktbB0uaWm28K3ineGz0BanXoiW+uCqggvwaxoZPJnSUZ+U5wKeLqSQlnbBJyaj2T5r3Hzq1h8/myynBJAGD6AUyOPDKHGEPPBqwrjO5mwD1FRXAV13RZAIxj0rRdhuOlxWeBeEHOeKhIRsg4qOOB3fbyWPAA5ye1W7vSbvTmQXaCNm5C7hn8qasna5m7tbFMxp/CeagkQqNwq4sAPJb9KkWFWQYIzVc1ieW5lgMDnBppfcSTWnKgVMEDI6GqttaJPfpHKdkRPzMOwqlJWuJp7FZHBODxx1rfshu0CYscqflH1xWbeWEdreRRlmCMwBI5wvFaOoQnSZGSIeZZyn5RuG5T3rOpJSsl1KUXG9zA8k7sAZ6mo3Uh/Wup8PTW8NpeSeSJZHYKmRygwawbxEN4zR5weT7VrGpeTjbYJUrQU77jLXmYKBxtHXvVliphIA5ByDVZTtmQrwelWEAZWBOM96JEIolV3HPHpT1h44qRlAfPUU9JB0xTuQ0NWEjr0xVgAYHyikGW4HSpcN6VEmNIpnLPioZQc4xk1KTiQira27WsQlYfvHPHsKV7FpXJ4EVtMSAYLAbj9TUKNK6TeYTlcJn1NJbLK8++I8KMtnoBUskgaMIMAZyR3zWezsbJ3RnTx+Ww2nhvWiMZb2qS6BwvrmmxY3YrVPQya1JAO47HrW7pKJZaZc3lyCplIWIk4O3qcfWqFokf9n3lw4z5UeV+p4/malgi1HWdEaCKB2WL/AFbDp9Pw5rKtG8Vd2VzSjNKbsrtFeMb23HgO+c/U1o2dnaxXozeRtkFSGGMZ96fbTyRaEluLSMNFxKzjJYn/AArLRlG1sBiDnjoah3ldbGiahaTVyzf2YW/cwzRlWcnjOFGaS8ggeJc3LyTKOw+Vfoe9OgmtnuAu0MCckZ5ArYktdOlt5vKj2bFPzbskkgEVMqjg0nc1VNSTaObWAkdacseCMEZpwPJAyTntSmEoATkVvc5G0hhUknPWm4I6CpeTj5eaR4rgDdsIXGc47UXGnc1tE0m7upY7qHZ8jgru5Jx7envUXiS6STWZC8olkQqrMpyOBz9fSsz7RcSQeWJZBGqH5UOBiq0URnZCTyy9qmMHzc0mDnpZGgIs6dLcIQdrY/DGf61oRqlvo8csMauJBtlDgEhucbe+BxQsWnafbNbzeY7vglgehrp9F0C2TTY7l1M6SR+Yqs2UAPc+38656lVJXe1/vOlUnF6nEOpf72OOOlOtrF5CJwuFQjII+8M8/pWj4jtodMuEMJzHMm8A/wAOaWG4MsLwRgELGVUjvmtfaNwUo7Mx5bSs+hW8SeTDPbzwtFNHu3lQuO461dGjv4iBitFTKjhs4A+pqrd2pXUYrcDzWGDKy/djOMnnpn+XWtzRdfhiSPT9NhCqV8x37scZLH0HQAdauMVGmpt7DnXlzSppX5rFnUPBdlZafZR2kjJcszLJIzZ8zGPy5pLLw1pmlRs1/Ik8sgARHXCg55I9a6OdBfW+mTcny0Zs9RkgVxHiw3DX3mSyABANigfd/wDr8ZrhjVqVZcnNY3UYxjtsc7rlhHY6uwhX9wHyMenXFVp0AuJAp+TqD6it/TryPxGotZECzYLOQPQdc/lWDdARztH1C8A+uK7qUn8Et0c1SCXvR2ZBIVycdjxSrCeWAGPrTHwfu9+atr88XPXHatm7HNLc6Kwg05NpdAQYwSTknPf/AD7VY32fa3X8hWNpjuF2Hlc4OR0zWp5U4421xTgr6s0jM4/bicHHAbNb7+T5EayRlwAQMn1rAnOHOO5rfuisMS5wWxlR7VtU1sXS6lWWRY4ysaKiseg71UfgA9805iZDk9ag2zThzEPlXjPpVRVhybY+7wCWxkHB/OqTybVJHWnzz7o1A7j5h9Kit4mu544EGZZXCKPcnitIqy1M5O70Ol8K2TahGSR+5BIkz0I9K6u41qy00wwKVCIw4Re3em6R4fvtP0IW4jRWYMSzPt5OefWsprJNHtpZ3kt7nU2kC28KHzB7kj29682rbEVHzPRbI64NUY6bsb4s8zTtRa4hAjW4hO3A6g8GuW0giRZlkJIU8ZNd7L4buNWtll1a/d5ZEx2Plnrj/wDVVC68HRaFpLXTXgcHBI24Jz2FOhiqKh7NSu9gnSm5c0loczax+XcSq/UNircokhDsBkYwRnrUVxlLhZA2xWAYk+mKjuI2AL7zycgk9a7d2mTF2joMskZgxPJBrYsbY3MggMqj5Wb5ug2gn+lN0qwAtUmYg+aeD04//XW7ZaEIAZbiZk85dqooydjcZPpk9KwrVYq5nTpuUrHLpdpJGXjjAYHnitTWT5+m289oNqGMQsAOCep/Imp7Dw/bHVJIDvFvCgMmeu49qn1u9A0u302zt4UiV2YbTjJHBz71DqQc4qJaThdSONZpIbTy1I/e5BPfg1ZsolguYYxl5zIF2jtz0quY5pLiNIzmXzMKVPrVu2jm0uVr3YZQhID4ONx711z+F23MoO8l5HQavpztZxCdFQAFlcLy2Se/f+ddc0T2fgmCOymDqsKr5g+Y45zVFr0NoCs8UU1ugVgz8FcnGf1qjpWqIfE8lipxYPB5jr2+QZyPqK8vmnNcrWiOyo4t83UzfF1mkNvpbOSTJGjOvpmorWW2s7IzhFecRs6pjjjBAqt4k1JtS1PezbYlIRPRVBwKr6iU+z7IGIIKjPTgriuuMG4RgzG/vOSM3Utalvolto40tLeQ732k9STnJ9Pauk8PXWmR38NtZiaeEQFJpmTCZOOg/PmkFvap4Jgk+xxTvGNzFxj5iTnn0o8NqqT2tzq1xFbsYHa0iVQM7geQBx0IAzXbVpxVKS8jhhVk6qb1toddbyuif2Z5oiKYNtKOjpnp9R/KuL1/dc6vLbwb7hYxj5Rkk45/Wtn7VcW0IguV8y2c/LIeChzgH9K546kdNurnyCCZF2q46j1xXlYem1JyWrPXnbl1egy2kj8PaTcROVN7dAK4HPlp6Z9a583O9w7DrS3fmuRNIDyTVZSfIX1FenCna8nuzzZVL+7HZFhmwM8c8VbgjYoGwc4FZrtkcjpzXWaRprvbRytuO7b06DPrRN8q1MnqPsIzDZHcAPNwwJ9KuLHhQN46VM1vwAzoeyhelWVtm2jkdKwunqJSaR57McyEVqQP9pheV2GR8oz7VkynLt9av6aCdOlKkFvMPBHTitJrS5tTeojkIpOee1WNEjmZZI0tw+erkZAzn+lQGB7q7EMQ4Pc9AB3rfkuI4LVLO3HlQHAecjG4e1ZVJWXKt2dFJa8z6HP6nZWsIVbZ2eVclzngn0FP8GzW8Hii1a527WDKhboHI4/w/GrV1b25tXngyCrhSp/nXOFXjmJBwVbIP8q1h79NxuZVFyyTse4X4SUTRISoSMmWTP3eOg7Z9+1clpWlHTri7u51JACqpPTaeW/oK0rLX7TUrSxjRGDzANOu7jKnlfxPJPpVvWleZIPJO3zwpGOhXOTXl1OZRcHpf/M6KVlNS3L82zy4lbiNnAbHYEEH+dcz4uvJZ5rbShzgKScc5Ax/9eum8uS5jmQKAvBXPrgVyN5ITfRvOFaSEFVcd16Yrgy5e/ft/SO+tDmVluYmu2qxpBtOcocjGMc9Kimg22aSjkFRzW1rVm9y0Zhj+RYi7N7Cs4DboQcEk72jI9B1r3YTvGJ58I7+hs6CiJpFq8gL5yRkZx8x/KunsI4LwMn3Q+AXHVccqfwNcnoNyi6Cgzko7DHfPX+taOhXUs19c20bgSmB3QN/eGP6Zrlrwk27dGKlK0kiXVxFo9hdWslzvupnJJQda4vVVubZPKupNspO9k3ZZQ3TPucZxWjepPf6fDqEtzvl87yWTvGOxrW1/QLBdMku/LY3USIZSWJ3YPOfcjrXbhaSSd9Wc+Jk1I43Q7gWupQuV3x7ypDe4I/rXcSafNN4duI4Y0SBySGc84zz9BkYrg3gRb17aDo0uE9ucV6jpaNbaM6XOy4WMDI6AnGSKjGPlakty8LqYTafLLo8MEM5UyqjEStgY7ZFc1HdpFeRGBnaVTsYkY4wQf0qe91W7fVLi4Em1pSF2DoB2x+FVYlCXGccngmnTptJ83UuTvKyHagvmxEDO58ACi4Di2R5MhmjBIIxyOP6VteGpli8RwyPF5oQEADqv+0PcVq+KdSt72SW3gdZo3bbGyjk54xz059Pxp8/K1GxNmnc4hEe4sFN5N5dkvmMoXq7AZP64H41RW5llewmLENEEhyP9k8foa1LjRdVt2MN7b3CRwREIGT5QCcnnpyeazLBN9rcr1MbLIPwPX9K7U1KOmpxtOMrs9f12xha2hhyAzL5ae7YyB/OvNCiwajAHHyh8Nn0rvPE935lja3EL5BCTIQfb/8AVXLalbpeL9qiXCuN30buK8fBtxWuzPUqR5olbXbfybSRUQhQQc8dfaubX/UAmt03E01k9nNlztPlk9QayrC388EyfdDZx616VPSLucCg+blKksbcMAdpXniu70i8t4NCtWCnzpECsVPJwcVibAFw33elV2AikiKgjByMHHeoqfvFY0lRcdbnUQ3AnLPGm1UbBGMYz71dDtgcD/P41j6aH+wvhxmZs4PoDWyYlz9+ufq0YzilY86kUFmwK0vD9ytpfGN4vMjmwrj056/hVN0beatWX+iKZGXLvwB7V0z1jY0hG8jb1S4tLaV7S0QZBdWcHdnPv6VlXEtxcQGWRgQuABVQytBeESYZXA+YHpVouvkKB1yc1koctmdUXdWbGRStHDIMZVxg/Wsi44lbnvW4vMGMAfNgVkSRA6l5K85kHHtWsLXZnVjojsdH0Nrk29raOFChWuJDn+LqB+FaHiTUjBrXlwP+7gKpt9lHJ/X9Kpvr/wDYOkRwWu03U+ZHl7KD0A9TjvWTFL5uk3d00vmSTsEZ2OTnPSuLlcneW2xrdc1o9D0q0vFEETnB3JiuL8RSI1yEXGVySR6ntVyG8JsRBFKPM2KyEc89CP0rBvpQZfMYEDGWB7HvXn4HCezrOR31JJwuT6LqE6X32UPvjlBRlbnsaqWcYktbiNmYBSr9OBztJNV7C9isbpbibcchvu9cmpI9QgtorjcjlblcLg4wOa9dwab5V2PO50ncvaLbSx313aKASo37T0yOP61e063uIdaSZAfMj3kKOP4Tx9OawLHUJYt11GxLovluQex6fyrb8PX/AJ17NNPMMLtUAnqWOKPZylPXbqZVJKPvROnsdPtWiezuEXzEKE9OQeePxBrL8SzXBtzbhSsSRsJnIH7xu1VdY1yG01lXn3NCsnkTAdQjKGVh9Dn8KoaxcJd2c0n23zYUULGFVvmJ6Zz0rsSscLberOQM7Lcq+fmDA16TpjSXWixwxP8AvpJ3Qg/Tv+FeYSfLMhPYjNdjpd+1tKXVjsysgP6Z/I1y4yHNFNdDuwb1aMy+RY9VlTIOxiMjp6ZphyGBH8XIp12MXkrE5yTz7Ukm5ym3ooxVLZFPSTNDQj5uorBvEZnHlhz/AAnqD+lXNX0iW1XzWCTQl2CSoOpHXPcVz0UFw7rHCpkkP3UTlj9K7XULWW00m5kW5iljVVleDzMyRHIySPTnnFY1bxqJx6m1NqzuY+m6tf2i+XHPKYAMGNmJWs60gSXXmCIFS8jeMqowN3UfnitW5kij0O1EBwku6RuOSemfpWLDM0E8VyCN8Eiyj8Dn+VaUGuZzSsRiI80LGjcSTf2Va7XLRKrIc9PlOKTS9Xs7ZHivOFkU7gTx7Ee4qppVy17Y39vnIikYowPG0kn+n61QkjWQbGFL2UZc0JdwcpckZRfQ1YYre7uQY5Fk2jJCnn2rPhi8ovGozhj/ADrFk320zBGKup6g4rb0bfPCzuGkODuNayjyRvfQzotzq6kM9x5YJJ2jpT4JI54FLY+YZA/SqepxsyBQvAb8aitCTEVJOV6VXKnG5M6jjOzOijl3WttAF2mOZQZV64J4rsPsz/3h+Vef2c/llmZ8YZSD16HNdz/wlGhtyZmyeT+7rnlB3sjKb5tUcT5jIcFAwB7ioLppZZSUG1T69asycE/WmtkjirXc21asUfsO8Zkdj7CrAtjEnEzAA/x8irltA0znj5V60t1aO0yRx4LMDxmk6mtrjUbK6RnG9ZRs8kFl6HdwTUmjmFL157r5nKnaewNXIdFkZz5xCqOhBzk1ZbQsrmJyP94daUqtOzjfcpRqNqVtjJv5Fu7hn8wYAAANWrezuJvD8KJtUzXLBQzhc8defpRJpdxEkkjJ8sfU5p9zcLLp1nbQqMxglix4yabd0lD+tAW7cjYuY7GwitozcGVvLCsYWHBAwaw9Z1OymSO2sVcHpK7Hkn0FUTbSyP8A61unRBUAtUXH3sjnNFOhFNNu7HUxEnHlSsiZkDSZkJEar2qO4uY5IEVAfl6Z9KU25YncSfqaaLfI7cV0JIwcn0LWi8m68w4Qx49s5HP86hsbu4t7ktEoKltxU9yM4/nSwxBWKliMirlleS6ddie2CGRePnXcKT0baG7SiovoaHivTGRY7wufnSMzREYKZXg/Tt9RVmbTr6Xw5a21tEs0SYdpxgZUj5c/qPwpv2iXXC7ajcoG8l1XdhcnBIH54rT0XVLPSNAKajKs80Z2xwI27cMZGPQetFOTcVzbmFSKUny7HIroM89xLC7RRyxR+YyM2Dg9B7k1p3unzaMI4ZmzlCC3YAEjH6U/R4L6/wBfk1S4j2rIGbceFYk9M1sa/cPBdRR3dukkVzC7bWPzRkHGQeh7Uq17XWpdCSUrM5Hzw8avkELwfemtdoFJ6AdqVNIuLpn+zIWjPzADsPetKw8J3l2zK5jh2nGXbkn2ArOdSlBXlI2Uakn7qIPD+sCw1xbrBJETqvHQkcUx7qUSSzM5Z5kdTnnIYc1vR+ETb3aKjvJJEVaRgAFGe1Gm6fC/iSzsrmJZIGmZXU9Nu1qwhXozm5Qd9PwNfZ1Iw94pardLF4c0eFUAYW4JJ68k8fzNc814NvC8kd61PFMpe/aP+FW2qo/hVeAPyrEaMqMkHB5H0rpoQXIn31+8zqyaly9i34fuhbPqEP8Az0iAH4GopbryL47j+7KhT7H1qfSI4omuZbi1ndpEPkyAHaB3PvWfdRNLKzjlWNacq52Zqo+RJdB9/Fz5o7jn3rT0S6FtYvz8xNVpkae0tw67ECbB746mnLf2kCpCqZROORUzXPHlsaUZcs+e9jW32s+4snPr61l3NsodjEatxanZmM4hj3f7Qqt9qiMmQQAe2c1nBSTNq04TWrREDujUD+Ec/WqwJx0q5HHLOWEaNtByRT/KI4wfyrVNI4Grl8oAGyqt3zmrcVpDHCTLtL4zkdV9qz52iSVSEwCQaUlpZJGdnGfQ8Vxyi31OmM0uhJbOotw2OST0qO7lRo8tkMvQg9qt6f5VqjJKyuTz/u1k6neJu2qoGTkgU4+9OyCUrRNLSrl/LMWzcgbcXLdCelaMjyOp8uVEjX/lo5ySfaudtLgNCQGwuc4x1NXZWuHmEWx92AVGOoPepnSvK5cKnu2LN04+zOv2obyw99w79OlUrSIXdwUJCZOWAHQVMtjLuKhQ8vQ/4Cte20qCzkglLssoUb13ZDe2KUpxpx31Y4pzZBc3dhpqJFHbBm4JCN8zHtk1f03wa9yz3mpq9rFIQ4QMMhT6+lUL82tlq1vPLbRBZJPMZzkkY/8Ar4p0ni27lS7VgWguTkxZ+7/u+gqIqbgnT69Rza5rS6DvEVvDY6s1vZqiQxOAAVGQe/PcYNVHEN9NDbw28aFZWVABwVPTOOTg/wA6zZdUE0zGXzN56se9WNP1h9OuTdRCJ5FUiPf0Qnv7nFbqE0vMhSiW7nTIJ7uSJSLd4zh3x8jD1Udfwqje6RLbZKNux2b5WP4Vd1DxBbfYrcW1zJLcbB55ZfvPuJyD7ZxVRdaNyVe4eR3HAYnkDvTj7VK/QP3cnZlImWNQDnBHWpFVyAeORVi4v7OaJppFbABWNV6k9qyo7x7eZXC7lBBCt/KtY80ltYznyxe5qRySRLtDEL6Akc1JJKrqEcFsdCecf4VGNYjeUMLMbcZwG6VKmpW7j5bcBlHIJHNZvm7DXL3Oq8LaYZred3iTynAUL/exzXSmJIY1RVEQXoAMVw2m+IprOB4l+VScrgA49qgn8QX11NvdjtHGBxkV4lfAYivWlJuyO6nWhGKR0N9f2lvOZBJ/rD+8zyKoTiI3kGo2hwIiWbA44B/nWeGtbghryCQgD5VDcfjUuoapLNplvZWyKoTIOVwFHYD8zXXRw3I0le/4DnVTXkUIng1HWNLtLeBJZwrtdGcZDknP6CpPEEy299HZw28IitNxjcJgndnryehPFVtFP9ja2l9cqX+VgSO2aq6rPNe3080cZ2u3BPTHavQSftEl8NvxOTTlcnvcLPUrSysZjMsjTkFYvm+VQRzj3rCNwN4IK7AcgHmrzaZcPgNkg8gdqU6QVGcE9sV0R5Itu+5hLmfQqXd813IGlcnAwAg2gD0quuGPyIc1sDRH2BioXIzVvTdNiium37WIAxnpjuaHVhGOgvZzb1MFVli6qy59RU8Es0Th1Chv90VqapeCW+YOv7tDsRe4GKZb232sfKox25qfaXjeSFya2TK4u5hgbUxnOcYNSeex5Krk+9XjpEmeMHPPBp39lr6n8qzdSn0HyTM2Rmd8n2xVsl1jO0deeO9TSovlwHaOU5496kQDy+gptCW9jDlguDL5nzHJ5FVZYXJPB966YAc8DrTSiseVB47irUrCcTH0xJI+cK6/7Rxit83yqiESsR0wp6VHHFH5qjYuPpSzIolwFAGR0FZzipO7KjJosw3FvIGEEjxuR8xPWkOoeQjBCjuo4JXrVadF2D5R09KjkVQOFA4HQe9Z+wi9zVVWtire3ct5Kry7cqMADsKrsrxkKF+YjcBVtFG/oKk2rvztGfpXRGKirIzcm3czDbzPlz2GQOmaqvE3mY9fWuqZFMOSoPy56e1Z1wi7U+UdT2qoSuTJGL5ewkbc49KcNwGDitEKPQUxwNp4FWSUfLY42mpRasVV2J5zVmNRnoKvhV3Q/KOh7UpaAtTKELAblJIxT/LOcsCBgZNdJBGn2GX5F6+lIkcZdcop/CsfaGiic+FkUBxkKanjkfjByPete4RVjcKoAz2FVYEUuMqOnpTT5kVazLVv5kKAsVK4Bwe2a0URCu/Krn1FZIH9K3dKAc4YAjPQ1x1oWVzppy6Feey3xfKVaQDg0kNuyRbZow208HFbMKgWTkAAjgH05qnN/rsdieRXOpyfumtktRkNnbq4IViScr6AVKtnHIr5gUYOelTWqrs6D8q0YVG3oOlYylJS3HZW2ObudPVl2bZQuc/KKzX0m4aFi2FxjGDyR712EiL5xG0flWeyj5RgYz/jXRTqySM5xTOQl0spcksQ+BkndwKvwWcccIaPaDjOAa17kA78gfcas6P7tdHPKcdzJxUWRKRF8yxdB36Uf2hP/dWpGPyGmADA4o5E9WS5NbH/2Q==',
  '/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD6APoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3qiiigAooooAKKKKACmu6xozuwVVGSScACiSRIY2kkdURQSzMcAD1Nec+IvEj6yzW1qxTT1PJ6Gb6/wCz7d+9K5MpWRL4j8TPqTNaWTFbIHDOODN/gv8AOsAk9ifzqMNg46VKrDoanci/URZXUffb/vo04TyYwXfn0Y01l57U6NT0xU2GPDSbgfMk/wC+jSmWTOfNkwP9s0Ee1GM0noCVwMkwHyzyjvneeaWOWZs5nm/77P8AjTcYI7mtqxsoBAJpV684boKyqVIwXMy4UpSdkMsLSSWEzTz3AX+ECQjNTz3fkQmKLegPJJck/wA6srcQFfLTAwOBWTdELvkkbCL3ryqtaU5b6Hp0qSivMr3OpPBCzyXEvoB5hGa5ufV7wuxW7uEB7ec3+NPvrkXsoIUqqdOf51mTLvkBGdnT0p07rc0kTHWtRCEfbrnPr5rf405dW1JQD/aN2DjvM3X86z3ZRwASR60wyd9oA9611MdOpoxeJ9ZtLhJo7+43xMCN8hYH2IJ5FexeFPFdr4n0/wAxMRXcYAngzyp9R6qfX8K8I2s7ltuc8j/GprDUrrR9QivLKUxXER4IHBHcEdwfSumjVcHYyqQ5lc+kaKwPCvim08T6d5sWI7qPAntyclD6j1U9jW/XoJpq6ORqwUUUUwCiiigAooooAKKKKACiiigApksscETyyuqRoCzMxwAB3NJPPFbQvNNIscSAszscAD1NeZ+IvEUuvTGGEtHp6N8qHgyn+83t6D86VyZSsO8ReJJNdlNvAWj05TwDwZj6n29B+JrJwsac9KpXU4tYzIwzjgD3rHm1SWYkF/wFY1K3JoldlUqDqvmbOgMqYLbgAO+aZ/aMCHBdMd/mFcwzGQ/Nkr9aVEBwFUAe9csq1TvY61haa31N+TW7Zeflb2DZx+lCa9bqTvXoe1c9IhTOVXFRT4CRuvRiDSVSb+1+RXsKa6HYJrVs3B/MGrMV/bTH5X2/73FcgBwBg5IqNpGRyMkAUKvPvcHhqfTQ7lAGlUkZXP51u3UhSAgYxiuI0e8mlRoyxKLjBPb2rqLU/abYh2J2nAyajEe/BSRNFezm4Mh80oCVJ5rO1Odvs2NxAz0HU1pyo3mNgYzVOW3R8bhuI6Vw9TuRzDOWA/hzUE8jK4BcAenYCta/siu5hznoFHSsW8Ahdd2SzDgdq1hZsiaaRVkmKt15NIr7nwf0qJ2OSSMf0psZAI5OfWt+XQw6l2VlTG1uopMlQwA2ZHBA5/E1X84sQMfd4q2nMfLJEOzMeSahqxRX0jV7zRNSivrGUxzRn6hh3Vh3Br33wv4ns/E+mi4gISdMCeAnJjP9Qexr5yAIbPatTRdXu9E1KO+sJCkq9QfusvdSO4NdkKvI/I5ZQufStFYvhnxLaeJdNFxb/JMnE8BPzRt/UHsa2q7U01dGGwUUUUwCiiigAooooAKjnnitoHmmdUjQbmZjgAU25uobS3kuLiRY4YxuZ2PAFed6p4mOr3fzLJHZIcxR92P95h/IdvrWdSTjFuKuwTjdKTsM8T6je6/IEQNFp6HckR4MhHRn/oO31rn1LAFWXGK6ESxXEeVOR9KzLi2HmEj+VeVTxVTnfPudk8PBxvEz5YUmjZXPBrHn0h1/eI4wOTxzit7y2ycimbJWJQqea6vaRnvuYxjOntsYTWv7kjvt3UGCUwblGFUHPGM1rRQGXfEExzja3oKsrpmU3yMBGq42Zwp+vrXnPEW0Z6fs76o5mEmSIqu1nHHr37U2SB/s21goAORWrNLbTPCiRP5/JIjHQ/yqlMEVpYQTnbkk9h6VrGpfpYTWhTjL+YAGG0etXorb7TfqjA7QNxxVKNQACOgbPPpzW1ohFxeTADogA9ua2j8avsYTbUHbc1La3WNQkSYz2XvWi1ubdFZpcSHkKo6U5DbWco+88mPvDtUE06yPvJxmlVxCekNjOjh3e8y8l/CibpwFVR97NYmpa3EW226lR6mqOq3Ll1RcbMZ681kXE2VBbtwAO9cyjzHW0kWpdSk+Ykkk8YJrOuSXlDHLOBzk9Khkl3SKR69BUTS/vNxb5cc1rGnbVGM5XdhJm3MFC4UDH409E3oRjHfJHSoZJN54HyipoDnBbtWsrpErcWOFt5Izx/FjvVpCuQUTfKeAz8gUzc2PmT5OmB39qYxbaPlbjGMVk7sppLYr3kXl3PLqxfkhBgD2qeIqqEkZ46+lRNExmDEc96lcFY8DGe+Kpu6SM0rFrStau9D1SO+sZNkq8Mp+6691YdxXu/hzxHZeJdNF1anbIvyzQk/NE3ofb0Pevnfac88Vo6Nrd54f1OO9sZAJBw6H7si/3W9v5VvRq8jt0Mpw5tT6PorI8PeIbPxHpq3dqdrD5ZYWPzRt6H+h71r16CaaujmCiiimAVBd3cFlbPcXMixwoMszf560zUtStNJsJb29nWG3iGWZv5D1J9K8w1nXp/EJjuSxjtOsNv6f7TerfyrOdSMLJ9Qs2m10JNd8QTa7c45js0OYoc9f9pvf+VZTNtHApjHYBgfjS4Ljkis6mIjT0Ip0J1dWTW968JwcFO4qaXVE25ER9M5rHmjZJOCSDyaRSoGTmuGapVHzW1O+EakFa5f+3LISdmKnhlB5PWstSN3H5VYRiuCDWco2WhsmPedbaeSVsgNIqs391M84q5c2cDQk7AxwcHJOR61VaTD/ADIsqOMMpHb1/Op768EVmqR/fkXAz0X2FcEk3JWOpWsZttaRw2xugWaZkcCI8AjPGD+Fc8ZJCWd2AzwSea3JphNNBp7ttWMF2KnqetYN7hJCq5IBwK7aN29f6RjU7gZDjI79jWpok3lXLgddoGffrzWWIy+0nrjgVoaUqrekgDkcnPf0rWb90lI6AvubJ55pT83Q02nKMkcd65jROxkaiirPgZzj5iay5o1fJwTxwfSunuLJZ23dD3PrWHdxmNiq9AdufWtYuxL1MgqUGc45qtI4LFj7YAq/Oh6LgsTxUUOmtKxLOOmcA1vGStdmEk72RBF83XkVcQLHjjrTHs44kJL/AD5pYpMR7G5weKmTvqhpNaMtrtSP5hj0zTDyoC45680hHZjj0qAysrbUyx9AKytctstl1AGRz61XedFyTjntVqxt0lgN3dvtjwdq55ODj8BWXMAz5wBnsBRFJtrsRJtJMuWtr9rJlkIjiB/h5Y/4VtNoFjEsly8pcBMrCvHOO5rBs7mS2ZQ7HyyclQetat1rMHk4hYyFhjBGMfWsayq8yUHoXTdNxvIg8P67e6HqC3tmQG6PGT8si91P+Pavd9B16z8Qact3aNg9JIm+9G3of8e9fOaszMSvTNbGga7eeHtSW9gYqcYeM/dkX0P9D2rvpVnTdnscs4cyuj6IorN0PXLPX9OW7tH46PGfvRt6H/PNaVeimmro5tj508YeK9Q8VaofMBis4XZYLcNwuDjcfVj/APqrb0b9/pFs+ATtwT9OK4W4ST7RN8rAb3JOO26u08LXtrHpq27yqJFYkg8ZzXlY+/JddzrwtuazLsqHkEEVEilTirF7qdnFcRwu6hXDZkB4UjsaWNYnjEiSqysMqa4oVGlqjrcU3oyPywTyMmomtfRTj2q2GVOgyaUvkZp80t0Fl1KCxqp5HPep12lcYGKWQLtzsGaQoFQMXGPStFPT3iHFvYQsA4XJUAY9B9am1FRcw2hjO0RhTiT6A8/571SNwG3KqKT0wTgH2qDUdckKqjKAyjHXgVioScvdN+ZJakN5dAyu2Iw/coBisK6lDS8cjPWnTXDXDnAwM/nSeV8vTIrup01BGMp8xLayI0KyKc7RyPerOlzxi/KyHbnBU+tUEiKqyjAVj+dEoaHy5V/hODz2puKd0ieZpJnau6W8e+Rgo9Sai33bWYvlhihtegknfG//AHR1Nc7qjXNxNaFsMjAcdicdDU0MVxqjPc6jK0iQrwp49goHQD6VzxglHmkzWzk7JGpaa5DMximCo38JGealvrfzYPkXJNc7Zx7tRUxxhUDAZLZA/OuxUgp0HFZ4ioqTSS3LjSb1MzT9GjZGllGGBwDngVU1Oe2tMRQsfmGWCtVTULq4tmu7VJGCGUNjPUY4/Cscz5GAMtWlOk5vnk9DFtRFuGYvwGy3QHtTwjK3zdccVGmHdCcls5/+vVuQ7Wx1rok7aGb11Kskz5O04A4pIfN3gRlt7HjFOfBkG4/L/WrGnqrXLSHnaPlyeKmTtElXcrGsrqTseIOigDB9T6Ustvb+WEMQXPXFEa3LvvSInHXsPwq1FYKyCS5kLk87F4xXBKSjrc6+W+ljNTT7SSYDyyQOwPWteDSrSRf3VlGATyzEt+nanSCFIVCxBI8EgD2FC6uixCKIKgUHLN0/Ss51Kkl7txxpwW5n6npVrZWbSRKS5cKSx6fQdqwWADfdPtity/E1xavLuZgcEKRyRmsxE3JgjHNddBtR953Zz1Iq+iNDw1r97ouom5tXGF4kjb7sq56H+h7V6qnxH8PtGpeW4RyAWQxE7T6Z714uB5dxKoPGR0qQhMn5j+ddMK04aR2MJU1LfcR4JYfOcOjDcxCnvzzRb24hmw6Nkjop5qhJITMU3naGY4+prQsL0C+jQqJNpCgHqPU1rUUlcIyjZGq+jR3FyspLIr/M6uen09a3A0EQCoOg4rClt50unmLFgT0GcY/xrUA781wTUna7OiDir6Ehbe+1acCqPg5I9aF0S1v4YPMvSkhXcyE8Fuf8Kr3cNxpOyOWJ3Zvuruzx25ocH0ZSaLDxM/3Tkemajlsbh4iEwr4wDnpVVNQCndMhTHXad1a1veQyqgjlBJGQpPP5VlVdSmrrU0p8knZnI/aZLOQxzoVkHDnuv4VUmxLIXLZB6V12paVb6jh5VYOvG9euPSsK90WWzXdGTIh4GRzmuijWhLyZM6clvqjKVAvA6559qsCMsgI/KmxxlSSfvYycmpJmaGMDI+boAetdDd3YhJJXZBdt9mChWBYjPTpUSCe+Xyyo2HqwGMVYt7TH76cbpD0U9FHv71rwaZLLEJpHKJjKgVMpxgtTeOHctZuyfQpvKkumQwKhNwp2vk8A+oq5Jsjt0h5AZtzc9aiiVU1L7Og+WcZLN2Yf/WpdTjaTzVTdlMAH146VhpdR6bmkWlG63WhQDLFeROqqAhyQelaY8QYKDylY5wcHpXKzl32qCRnhea2dLtkVEaT7iHe7HvjJP8q7Y4aNRpyPPxGK5ItJamnciNpzJOFaVlyB02r6n0FUJdOW5zJFbMR2kLFQfoP8asW8Ru7iGKXImusTzf7Kfwp+X6mtu7eO3jAQbQBwPSoxNeNFqnTSuZ4aE63vVJOxyFrbTNM6uqoyDkZq8ljAzZmlIz6VmyzGO9Eu7aAcZ9qbNfvNwv3R096ylGcnozpUoRWqNGa0sEkATJPuTVm0WOHJhREOfvY3GqsLRm3CTyKs3Vsc8f40SyKqtFESM8ZHasXFtct2aKUV7ySNGOeSeNneTjOBu4z+FWYsbWIyykYHYCqEcf7tExhVGMnqa0bcDZHnnPUe9ctRJbFRbbAMRZSRFcfu25A71lWZVYsmMys3AAFaV3OFDxggHYcZrFtXKQmfLkK2Ao4BJ4FVSjeLFN2kdC6BbL7TIr7WwCSuPpXP3L7JWKkFc8GrWu3E8dtb2e47VX5snqQAP0rEjBYke9a0Kfu8zZlUqa2JWYGYtnrj+VBxk9ab1lIxQzYY8d66TnbM/eqTMxOTuOPzrR0K0jv7x1abYwO7GMlhWJI2ZSDxyTV7TL021wZUZg4GBgAj8a7K0W4vl3OeEldXPRQiKAjDcAMZ9aGhT+E8e9c3Y6/LNIEmKMSMbVGDx3rXjuXZN6oWwOF/xNeTKjOL1PThUi1oZ1xqEml3TTI7tJ0C9v8AP+NXNN8QtPqSrCryRsuWbbk5x05zgD+tYsthqtzcPczBVdjlQsgCqPStnwtfPpd/O19Gkkvl/u2KgnIPr+ddnLFRv1MLu+xpatYu9qbkw7XJySI9oA/DvXD3UvmSsEbBH8Q4wfau11vxXdX2n3MexUUjauB0rhxGE0/zW+8TjHtmrppbkt9GddpGrm4tYULGVokzcPsOTzgY/D+Val5drDpkt3AVkCqSpHT61xGnanJbDNuTG5GCR3qxqd/cXtmE85jHJktjjODjt71jKh75op+6ZqX7NO80x3Ekn8f8K0I/KuJPPUAlRz9awBE7PsKgEHGa1tOXykdOmea2qQSV0VhZN1EpbGjEolmVScBmxWrf3QjiWJDtXGMDvWZp6iW6JIyIxkD1NW5ikEhurgqSBwvYVyVEnJJnpTd2QLYlbYysxEvVcdqqRGSa3lOD8revNKmoSahMQWMcWeo606ydII54ZD+9LZ3f3hV+8k+bcw5ovSOxj3Cqt5Ep9a3Y4sWFwP8ApgR+JNY0sBnkMzHo4GPQHofzrpNLRbm3ZHP/ACzOR9DXrUlaJ8/iZ81S62GXSm219mj++2yPHooUH/Gqut3rtOY14HTFXNULL4oicYMTp6d8GsrU2V9Qk284PWvOrxTxGq6Hfhm/ZIxrkFnw3PQ0+EY2vjgc4qO43G4I49hViOPykAPXHStpaRRm3eTFgDtIWbOAf1q9CuGVi2dxIIqhExDnHc5/Gr1qoeUBuOwwa56htTfQ0UkSNRvYAdakivlVNqKzH2WolgTHC/U+lSyRzQohHQ9CeK4nyvQ6UmtSrdPI4aR0KYHG/r+AFNjWWGwjQtgNKvAHU5qEmW6ulVvlHU88AVNdTbSMnJzjjsO1a2taJF73ZHrkhuLi4mU8IwQe2az7dcpnpitG5UPZ3B6Eyrn8qoxEA4FaU37ljOa9645RmTOOfWmMBuPHf0qcAb8VE27cee9WmYyRzswO9sZPzVc0tM3ID5Abiq4BDE8sxPGegp0Mjo/LbNp+96V6UtVY5Y6M0LbTrmC+4LABjiQjOB61Y1ua4a7WFJT5AHCqePrWcb663l2lLR7uFI4qeO7EsRM0aqA2Qw6fSsHGXNzPU2jKNrI0wf7P0uEW88pkcB5Ofl+mPalk1fdYhgB9oH3Wx3zWdLfRD92JCQBgYpI0WeBnBBwwFTyLeRtzX0iyw811cRneoUnrjpTG+VRu+YZ6Gk2sWyr4z1p/VgnUetGwNN6j7Boxewh1G3eDUifu3aFyokjYqQfXPWqoICKw++DVwnzrvzz0k+8fepluVArGIiTmRSSc8CrltEBGzhwznIyO1Rm2DT+Yz7V9AetWUkiiB2KAP9mplK60OzDUGpc8tEXrWRIrNBHxkZkbuap3L/aZvKLfKTk06ORYoGCbSv1qAMkYJX5mbqx6VjGPvNnQ6buubYiR/sU33QR/OnahKiNHdx5EbrtkApDaiQ73/IcVFdx7rN0QAJxgepraKTkmc1anL2cu3Qq3F/ArB42YHbhlxww/oa1tI1ZIIi7JJJ5mcMgzjnPIrlJ8AbChDd89q3NC0yCVUe5VnDfMFzhVHbPrn0rvjds8KcUlc2P7Uju7uBTFIkykn5xxjHXPrVe6iEscjoSZCM5rcfToEt9sSiFewVefrWOAysyv1HGK48XTlGamd2BnCdNx6nOR5iuNsmd2ck1dCBgT8+adf22X8xQQw6VPBte3V+M45+tRKd0pFRp8snEreVtjLjPXHNW7UAshBAI9agmwIyAMnJx7VHaNk7G9etZtXiVFpSNp5ZCeuVLDOOOajkmXziAmTkBBnpUIZlKpu6kDmpWjSGQOT8x9K5+VI3bbFjg+zxNPIQXfhQD0FUp2eW4UA5yckVNcSl8ckkDIBP5VBAQXLd+gzVRT+JkPsged8zRHIUsCQe5FMAAOMd+tJcLtkDAkkjcaWI9M9TzWiSSujO7bsyYKTJ25FI0Y3Hk9akUchu1LjPOf0qUTPTc5qDcpOMHjn2pp4QBsAE8c1agiMkxK52bcsPWpn077SHaExoMdCcfT+tek5pPU5lB20KsMfnoYgfmXnGOOfSk+yzSuYIVY47Ec4pqI9jI2D823nnpW94VsxcyyXU+9lVgOPXFTOp7OLl0HGHPJRI9P0OZERZYlxKN3zdQoPzH8qZLaJZOZgCiSEjavQc967O4u9MtLaQNFD9oVSgKcHFcPeZmAYKojA6D698965KNaVWTb0R1TpxgtNywoRrQFe4yp9vSo9rbckc1npctbytHISY88c9K0EmDAhegHHNbtOJKkpIiAGR7mr9rDDLuR1BbGRk9qoSDhvXFSWLs14jNwAhomm4mtBLnUX1ZqNAuMADioPsgZwTwAexp/nSO+EC/jUNzfGBtgwTj8qyXPsj1puilzS2HXSFFxGF6Y2kfrmqcEyGXy3+Rs9G/oaVrkkfKxJ75pquswZHjLE8kVfK0tTgrVIyleJoMG+VeTu44qV4kMRQgYIwRWbH9pt3Xy9zx5/wBW55H0NXjdx425KSHjaetZNS0sdmHqwcGp7mTfWDdFbcnbcMke1dDoFhFZ2sbu29n+YkHpVCQq0ZGfu81e0y5hhsN0rbVi6n+lduGnd+8eDmNJQ+A3bqUMhZ2CxqOnoK42/wBXAvMQENEuO3BqxNqbanNhkPkA5jgz9/3c+lY19Ivnkffk6EgYA9gK2rOM1Y5KClB36mulzFdxjacNjO00xInQFIxweQPSsJZJI3Uk4xyMdjXRaM/2tHZjl1689a86rH2cbrY9WlNVXaW5Wa2mXIZctnIGe1QqTHISQQc963n2GYFlzgFRz19vasSdT9pbcMc9PSs4T5tGFWnyO6J3lLBH77hirU042bH+8vftVCZSbbIHQg5qx9mZ3JLbv8KmSj1Gm+hDueVsLznqR6VOFAKoBincRYUDA60vAUlQQfepchpFec4VckDAxnFVg2XB/T2qeZWMbnd+FVkT+8cmrjaxjO/Nc0kxsBLU9EDIpweRmqC8kAtwK1bcA20XX7g/lTgrETlc46G6miD7CQWXbu7ge1Pha5AG1/l9zmnqPkICfMT1NNWbEeI0IbG0jGc16LS7GCvpqE7MzszArkYP1roNN1OW00lYbcAMRnPueprDEUrQ5liIDcDIqeBykag8AdM1lUgpxszWm3F3LKSKPOeTDO64XPOOe1QHBX5375xmnqokmVQw5PWr9hY2zXYN+D9nX5sJ/GfQ+gqW1DVl2ctjm7iXfcNn04qeC4CnryOtdB4mg0CSGO4sSsdyWAeKH7uPfPQ1zc1vhAyeuK0hNTjexk4yi2XDcZQn1FSW7Mijg5bge9Z6B1/iwK3LMxNb75Iw+zggnv2xSn7qNaUnJ76jWuWghLsnOOBWc07SMWcHnnNdhpEFlcPI0rZTy2YrIMlSPfvWS8EW+RRgJj5QR09v/r1jGrG7VjefPNJX0MUNhgynj3rQikEgD9O2Kpywct8wwvVR3FFs5VipJGO1ayjdXMac7SsapcGEjPIOaf5KTQgygMxH5VBbyea+zHBz/KryJ8rexxXNJ8p6uFipxd9UZLeZE3lhiVJyM9aralcHAQfKrtyPcVuzQo4Ax06GsW+tt8a5IDAkCtack3c5cXQcItdCvDPIkZjjHzseTVu6t4rFB5hEl3IM47Rg9/rTLdUtozKg3yAcOw4B9hVVd8sxeQmSRySe5Jrp6HkbshkzkZ/u1oaRP5M53jKYq3Z+H2nR7i6l8tByVHOAPU0JDb+X55Vo7MH5WPDyfT0+tRUp3jZlQrKMrroWZrwKQScg8f8A1xVHzS8m8cnPepBeRXD7VsIyM8EuwP55q0/2c2DNBC0bhhnJzx7GsFRSRvLEOT1RX8uWSPYOPelSO4VgomyPcU9JgeBwR15qykY25Bbd2wa55Sa3OhJPVEM0UhTeZRx26VTWZgSpxx/FWxcpHHZKxBd5M4QH071hlgFznn0pU3zImr7r0LvkSSxFzOu0LuwBnPtUH2Z3VmLqAOw71Np84+ZJB8p6duam8ofvE+6A2APalzOLsFlJXKkQBwK3rWMfY4P+ua/yrEETAkqCFzxmulsYgdPtj6xL/IVtBnNNNHCEJtyXJJ9BT0wqBRnGazJBNIxxuINWYZHgj2SrkZ4x1Fd9hU5q5o+Z5bBlJyOSSBVaS5UsQpjYepapOSM5IH0qtHppeTO793n0xU2XU3m5PRCrKQwPmhSPQ5qxuWUDfdN79TTJLONQV25/GqzWXz8Dj60rJmbjKO6LVzbQmEbJtzAg42mrOnzWqTFbsxeXsPEmcH8qzVsyRxIOe3NTxaNczhjCBJtHO1hUy5bWlISbvdI1be20OZmTzJt/YK4I/CnvbW9soaN3eJ+Mkf55rChtpI7lfMwArc81pNdq0jEJtQ8kZOCe1RKDvo2zSDXVamnbXKQRSKy72cqMBsAqOv64qpczTT7YlQJHngen496zLiaVZfkO1MAj1p4lkdCGlVRjvSVO2pTqX0HBGV5QSG3Lgc+lQxuxGMEAdP8ACmMxTbg5PbHSnoxbqTn61rrYycU2aOnZlmDcgICTWlb9JJW6E8VnaeGCz56ACrbSZGwcKK5Zq7aPbwtoUk35/wCQ6Wbcdqjk9KytQy+I0OWzjirzkxg4++ePpVf+zriR/OBVBtx83aqjyx1Zhi5SlHl6kkFtEwEbvgDnGeDWla2kMZD+XuUc88LWAVMTlc7vTApeZMhmYr6FjiupVUlseNLDyfU09Z1VZojZwSIdxw5BwAPSqotLl0SSWRZYUwoEbZC+1QRwxs6qIwfX6Vv2UULQyRbRGZAAQox0rP2qclF9SnQcIXXQbDYWFsiOd0jsAyqeo+tU9Rd5cRhQkZO4qg/nVq6mhsSURTJL3yf51R/tCX5vljO45PFVWmoq0dzOjTcneWw2KFYxkEksPSpPOeN8r096i82djkJx7CkMVxJ0Q1xS1d2d0dFZGlFqEZhKMMHGPasy7hwdyx4TP3j3+lPFpNwCUH1qbyAQBIY2IHHXiskowd0XK842ZnhmicP3ByKvrIxxJjO8ZOPWqksHlnGQVzSxzFAVwcZrRrmMYtxdmaBkJUKVP1rptPhzptqef9Sn8hXGNO/BHTuK7zS1J0iyOP8Algnf/ZFVShYitK9jlPFPg+48M6h5U3z2smfJnA4ceh9CPSuSKIrnOSB0NfU2r6TZ63pstjfReZDIPxU9iD2Ir578V+D7vwxqPk3G6W2kJME6jhx6H0I7ivSlC2pz3uYkVzsXaRz2JFXEwIssc5qgWESHIBycDFOMmQFyRn3rOx0Qq23LQ8sg4z+dMP3iVyfUCoLcMJeCcc5qy4J6cY5FI0UuaI5CFXC8565qTzAFOCQ31qLyw3s3Yiq8M7Kc5z9e1S4kN8rsyzIFij3MQM9u5qkZPMcg7gD+dOdnZyznNPTdG3AC/hk01oQ5X2CRB93bzxg+gpiwE/xH8amETSEnax+tTxW2/wBTzScrBuyoIkQHe7N9BUsaDP7sEGrSxsu/gBRxuxmoGbYeDkn2qea5SVi/FIsdqyscOxqaLiMP94ngD3rFlnKuO1aelT+YMPxtJOaylFqNz0KOJ+y+i0Nu3tYYbczzcvjr6fSsbUr95Dt+7GOFFWrq9MoC5+ROgrOCeawmfp0QevvWNKDvzTJlzTdolJmbftb5frUiKdvsKfcBWlGeualf5Yh2GK6WzncbNjrLG9ielaayAnHQY7Vk2hAyCevIqyCfMAzXPUjdlRdkR3RKS/ezkknNIiiRlAOGNS3Sqz9s4GKhiUq+c8imnoK1pWNNGEJ8u4XGDgOv3f8A61WYo1d2PDIT1FIrAjLc55qJVZXYwHZzyD90/UVxvU6FoF6EVAY02ndjgmsqXLtznrWtNcIYRFPHskznnofoaqSIvPOAK0pOy1IqRvsWLDR4r2HzGmcN02njP41TlW0SUxoGYKcFh/8AXrQs5nW3QA9D2qpYaddapqS2dpCZJZHOFH16n0HvTp88pu7M6iikrIl021lvL+K0s7UzyynCr/X2Hqa9ds/CT29jbwvdR7441RsISMgYq54Y8LWvh2zwoEl24xLNj/x0eg/nW/XqUcMoq8tziqVLuy2CqGsaPZa5psthfReZDIPxU9mB7EVforrMj5v8VeErnwvqJgmUyQvkw3AHDj+h9RWBlV5Iz2r6f1nRrLXtNksL6LfE/Qj7yHswPY14rrng8eG73ypkeYMSY5TgK4/xrmq+5qaQTk7I46OZEU7yBn1Pap45PtKlYCpYDPPfmtOfw+t3cC4A2oSMoSADWTcadJYNJOzrEwPyKDkgZ/SsY1IS0T1NZKrBeQjzZgdtyhhkEckrUEU1vFbF3jd5nPAHAAxwfzqOS5a4kDFVD9wOBUbyD5QMk+uMYrSxk5tu7JTcym0EHlrhiDk9SatxyNBDuljAcH+Lv9Ko78p8qj5R175q1FbExJMVfpyaUkuoRu9i2l80kA2cZ644qEXTLk7iWzVVzF9pHlu/l7csB6+lN8uVwDjFJQSLUmWZLyRl27uOpqu0jN3JFLHbEkl8nFWVj2pk4HpxRotitWVUhaRstn/GteJDaWqqfvvyfYVFbW5eQO/3B29aluZgz7j34rOb5nY2pxsrkb75cE5EWf8Avo1K7+UqA84GB7Vc8uNoVUHjaMYqhf8AngIilSp6cc1nGXM7Gz5oLmRUV2e4wSCCw/Crd8NhCA1WhtpftaBhzkHAp9y5kckcHPFaNXkjBP3XcnghLKoIwPWppbd1AMb5PvVAXO5eQ2fQU5Z5RjarfU1m4ybK542JjDOG3swb8aduMeBJGQR0Oaj8+c9f1FPMjPzI270BpNMV10NWO4t5EADYYDv3pkbhpGCkdu9ZIkAft+FTJKUfzEYA+tYOja9jT2t9zauYz5DF8MpFZcmUj2qO+eaG1GRk2uQUA6AYqTT7W51m+is7KJpJpDwo6D1JPYUU6UlowqVIs1dBsJdSuorWFC7sc4Hp3NeueGPC9r4dtW2gSXcvMs2OvsPQUeF/DFv4csAikS3Tj97Njr7D0Fb1elh8MqbcnuzjrVufRbBRRRXWYBRRRQAVS1TSrXWLJrW7jDKeVbujdiPertFJpPRjTad0eAeLbDVNA1BrOYFYm5jnQcSL7Ht7iuUZ2L7j84HQMe9fTGuaHZeINNksb2PKNyrj7yN2IPrXz34q8MX/AIc1R7a4XMZ5ikH3ZF9R/h2rmdFQ+EuU5T1kc/zHIec5yMUrzMyhQi+WrZxUZLFgpJGO2KQjCleSScZ7U7EF1mjlttyKse4ndt6VNY3TGMIcbMfSqi27bdgJx6YqysZSPDfKOnNZtK1jWF1qTzfZyceWPopAzUZbO0DAUdBTBDleGU4PODUiIoBLcY5x70rJIu43eM4JANOPUAj9aiMQWTcxyTT1yV3YAoBNs0IJlkjELfLzwaZeQhXLIcharKegzVgyYADghcYzWVrPQ3i7qzK8MkkLnDMR7VYEpeQFs8c81HJHbmNikzDvxxVAIxz+8bHvVWT1FKThoaZdItzsw+deDVJ5Ebb83PaowSn8Qx700orPyQfrTUbEOdy3CFwQZCM84xTicYIkGKhSJgvB4+lTLGcfeHr0qXYaDeCcGT9KVmXHVj9FppcqdqsSfao3eRupNKwN2Fzz91vxpQ/GAvH1qIZPfP41oaXpV5q9/FZWURkmkOAB0A7knsB607EXDTNMvNYvorO0hMk0hwAO3uT2HvXvHhPwpaeGNPEaYlu5B++nx94+g9FFL4U8KWnhiw2JiW7kH76cjlvYei10FdlKly6vcwnO4UUUVsQFFFFABRRRQAUUUUAFZmvaDZeIdMeyvUyDykg+9G3qP881p0UAfMXinw7feG9Xa1uk4PMUoHyyL6j/AA7VkKQ8mMY2mvp7xF4esvEmmPZXif7UcoHzRt6j/DvXz1r/AIYvvDuqPZ3igd0lA+WRfUf54rGcbFLVmcZzECyk56VWdpZlyecHk1P9lOcscimSF13Rx8JwWGO9ZK3Qp3Ik3Lk5wfSpkaRuQ2fSohE7FmGdvrT4pfLH3fm7U2JXLBWTYdxGAM01SR1xio0R5yZCcelWYodj5ByR69KjY0V2R5YsG6VZWRhFhzmicuDkjPue9UxPIko5+XPQ1NuYu/KSsVxnOfpTSSc7VqV03HcpUe1BIBHmMCTxwMUCsRLAJcB2I5/SleKNFZc854IFSP8Au23KahklaRc5x7UasNh6SCNTyfzpyy99tVQT1xzTgWyCT17U3ELlsTLgcYpjEMfSoQTV/R9Jvda1GOxsYjJLJ+SjuSewqVHXQHIXSdMvNZ1KKxsYTJM5wPQDuSewFe++FPClp4Y0/wAqPEt1IB505HLH0Hoo9KPCnhSz8L6cIYsSXLgGacjlj6D0A9K6CuunTUdXuYylcKKKK1ICiiigAooooAKKKKACiiigAooooAKyfEPh6y8R6a1pdrgjmKUD5o29R/Ud61qKAPm7W9DvtA1Z7K+TBHKOPuyL2IrGkgZCQDu38g96+mdWsbS8ij+1WsE+1vl82MNjjtmsg6JpPP8AxK7L/wAB0/wrndOz0NL3Wp8+xkgbDEMetMlRmcHaAMc19ANoek8/8Suy/wDAdP8ACopNE0nj/iWWX/gOn+FLk1A8E3MF27cAHNTpc7WBK/jXtkmi6V/0DLL/AL8L/hUTaLpX/QMsv+/C/wCFHImNSaPHjIr5BAwwyDVCVOSV9a9sOjaXj/kG2f8A34X/AApp0XSuP+JZZ/8Afhf8KFTSG5XPFVZ8Cp1KH7ykmvX20bSx/wAw2z/78L/hTDpGmDpp1p/34X/ChwQKR5Gqqu4gHJqIqee1evNpOm/9A+06/wDPFf8ACo20nTcf8g+1/wC/K/4UuQfMeRqCoJPU9KesZOM16m2ladj/AI8LX/vyv+FIdL0//nwtf+/K/wCFDgK559o+iXmtajFY2MJklfueAo7sT2Fe++FvCtl4X04QQAPcOB505HLn+g9BVLwVaW1vb3bQW8UTGRQSiBSRj2rq61pQS1Ik+gUUUVqQFFFFABRRRQAUUUUAf//Z'],
 'texts': ['16\n\nThe theme of Arcadian shepherds discovering a tomb originated in painting with Poussin in the',
  'Flemish, 1488-1541\n\n20\n\nWhen Italian artists of the Renaissance came into contact with paintings from the north, they']}

显示检索到的图像

for images in response['context']['images']:
  plt_img_base64(images)

以上,利用多模态 LLM 和 Langchain 以及unstructured,成功地从非结构化数据中实现了 RAG。不仅利用了文档中嵌入的图像信息,还利用了文本信息。

参考原文:

[1] Plaban Nayak:Multimodal RAG using Langchain Expression Language And GPT4-Vision

相关推荐

旭凤至死不知,明明他已经放弃和润玉争,为什么润玉还要夺位?

香蜜沉沉烬如霜中,润玉为什么要夺位呢?明明荼姚已经受到了惩罚,而旭凤,也当着他的面承诺不和他争天帝之位!按理来说,此时的润玉,应该稳坐钓鱼台,而不是大逆不道,妄想弑父夺位!可偏偏,明知道希望渺茫,润玉...

香蜜:看懂旭凤对锦觅的4次“报复”,才明白穗禾为啥那么悲惨

《香蜜沉沉烬如霜》中,锦觅在大婚之日,亲手用冰刃杀掉旭凤的名场面,让人记忆犹新。而且,旭凤还问锦觅:“你可曾爱过我”,锦觅说:“从未”二字的时候,不仅虐了旭凤,还虐了观众。这一刻,旭凤觉得全世界都塌了...

香蜜沉沉烬如霜:转世后的锦觅对旭凤未忘情,为何却要嫁进相府呢

导语:《香蜜沉沉烬如霜》这部剧进行到最后,以锦觅殒身为代价,阻止了旭凤跟润玉展开的天魔大战,也算是拯救了六界苍生。锦觅被天魔两股力量同时击中,直接就是魂飞魄散的下场,后来幸好被斗姆元君用一撮香灰保住了...

重温香蜜,明明错的是锦觅和凤凰,为什么所有人都要润玉退让?

香蜜沉沉烬如霜中,一直有这样一个问题,纵然锦觅真正喜欢的人是凤凰,可她亲自签下和润玉的婚书却是事实,婚约没有解除之前,便主动和旭凤灵修,亦是无异于将润玉的脸面放在地上踩,这样的情况,怎么看都是锦觅和旭...

香蜜沉沉烬如霜:润玉不过是爱上了未婚妻锦觅,有什么错呢?

导语:很多人认为《香蜜沉沉烬如霜》里面的润玉不是真的爱锦觅,说他对锦觅所谓的爱里,有太多利用,也有太多算计,而且润玉一定要得到锦觅,是在跟旭凤较劲,他对锦觅其实是一种执念,并非真正的爱。那么真的是这样...

再看香蜜才知,润玉并不得宠,为什么却能娶最为得宠的水神之女?

香蜜沉沉烬如霜中,众所周知,天帝最疼爱的儿子是旭凤,最偏爱的则是先花神之女,也就是现任水神之女锦觅,而最最不重视的,则是润玉这个长子,然而,谁能想到,就是在这样的情况之下,天帝却做出了将自己最偏爱的水...

锦觅至死不知,润玉已经成了天帝,为什么还要削去旭凤神籍?

润玉成天帝后削旭凤神籍,锦觅竟不知内情?真相让人心酸!润玉为何非要除掉旭凤?香蜜沉沉烬如霜背后的权力游戏天帝润玉削旭凤神籍,锦觅蒙在鼓里!兄弟反目的真相令人唏嘘香蜜沉沉烬如霜:润玉成天帝后为何要除...

《香蜜沉沉烬如霜》发糖福利 灵修夫妇人间初kiss狂撩粉

江苏卫视每晚19:30幸福剧场的《香蜜沉沉烬如霜》持续发糖,你有没有感受到?自锦觅(杨紫饰)、旭凤(邓伦饰)下凡以来,观众屡屡表示“感觉每一天都像在过节”。不仅两人“同框即发糖”的画面甜进人心底,陨丹...

旭凤至死不知,他和锦觅那一夜,为何偌大的天界竟无一丝流言传出

香蜜沉沉烬如霜中,对于自己和锦觅的关系,旭凤大概是从未想过隐藏,哪怕是自己和锦觅的那一夜,旭凤也毫无顾忌的告诉自己的母神,妄想母神能够看在锦觅有了他的骨肉的份上,放锦觅一条生路,也同意自己和锦觅在一起...

重温香蜜才发现,润玉和旭凤,锦觅其实选谁都能很幸福!

香蜜沉沉烬如霜中,大结局锦觅选择了旭凤,然而,对于这样的结局,却是无数人的意难平,难平锦觅嫁给了仇人之子,难平润玉走上了太上忘情之路,更难平最后的最后,两个上神之资的存在,却生下了一只血脉连孔雀都不如...

明明都说润玉好,为何锦觅却一心要和旭凤在一起?她,并非眼瞎

  香蜜沉沉烬如霜中,要说润玉和旭凤谁更好,无论是花界,还是水神,都更认可润玉!可是,明明都说润玉好,为何锦觅却一心要和旭凤在一起,她,真没有眼瞎吗?    不得不承认,温文如玉的润玉和冲动鲁莽的旭凤...

《香蜜》假想篇:锦觅对润玉是否爱过?如果不选旭凤,选润玉呢?

导语:每个人一生中都可能错过一些人,时而幻想,当年如果选择了他(她)如今会怎样?在电视剧《香蜜沉沉烬如霜》中,润玉对锦觅情有独钟,无视身边默默追随的邝露,多次为了锦觅无视天规,付出其实并不比旭凤少。而...

甜蜜将成往事,锦觅捅刀旭凤,期待值远超“跳诛仙台”

追江苏卫视《香蜜沉沉烬如霜》的过程中,大家除了关注锦觅与旭凤何时灵修之外,最大的期盼恐怕就是盼着葡萄什么时候向凤凰刺那致命一刀。回想当年素素跳诛仙台,惹哭多少观众。素素没了眼睛,真的以为夜华不爱她了,...

重温香蜜才发现,歹竹出不了好笋,润玉和旭凤,锦觅选谁都是悲剧

香蜜沉沉烬如霜中,因为和旭凤的爱情,锦觅失去了肉肉,失去了爹爹,失去临秀姨,更失去了眼中的万千色彩!虽然,最终两个苦命的有情人终成眷属了,但踩在堆满至亲之人尸骨之上的爱情,真的有那么美好吗?其实所有人...

同样是喜欢锦觅,为何旭凤润玉敢娶她,噗嗤君却不敢迎娶锦觅

文-黑狸狸在电视剧《香蜜沉沉烬如霜》中,旭凤、润玉和噗嗤君都喜欢锦觅,为什么旭凤、润玉敢娶锦觅,噗嗤君却不敢?①旭凤旭凤敢娶锦觅,有三重原因。一来是他认为他和锦觅相互爱慕,他不想错过这段美好的姻缘。所...